Density waves excited by planets embedded in protoplanetary disks play a
central role in planetary migration and gap opening processes. We carry out 2D
shearing sheet simulations to study the linear regime of wave evolution with
the grid-based code Athena, and provide detailed comparisons with the
theoretical predictions. Low mass planets (down to ~0.03 Earth mass at 1 AU)
and high spatial resolution (256 grid points per scale height) are chosen to
mitigate the effects of wave nonlinearity. To complement the existing numerical
studies, we focus on the primary physical variables such as the spatial profile
of the wave, torque density, and the angular momentum flux carried by the wave,
instead of secondary quantities such as the planetary migration rate. Our
results show percent level agreement with theory in both physical and Fourier
space. New phenomena such as the change of the toque density sign far from the
planet are discovered and discussed. Also, we explore the effect of the
numerical algorithms, and find that a high order of accuracy, high resolution,
and an accurate planetary potential are crucial to achieve good agreement with
the theory. We find that the use of a too large time-step without properly
resolving the dynamical time scale around the planet produces incorrect
results, and may lead to spurious gap opening. Global simulations of planet
migration and gap opening violating this requirement may be affected by
spurious effects resulting in e.g. the incorrect planetary migration rate and
gap opening mass.Comment: single column, 44 pages, 12 figures, ApJ in press, minor corrections
mad