17 research outputs found

    The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells

    Get PDF
    Transcription factors NF-KB1 and c-Rel, individually dispensable during embryogenesis, serve similar, yet distinct, roles in the function of mature hemopoietic cells. Redundancy among Rel/ NF-KB family members prompted an examination of the combined roles of c-Rel and NF-KB1 by using mice that lack both proteins. Embryonic development and the maturation of hemopoietic progenitors were unaffected in nfkb1(-/-)c-rel(-/-) mice. Peripheral T cell populations developed normally, but follicular, marginal zone, and CD5(+) peritoneal B cell populations all were reduced. In culture, a failure of mitogen-stimulated nfkb1(-/-)c-rel(-/-) B cells to proliferate was caused by a cell cycle defect in early G(1) that prevented growth. In vivo, defects in humoral immunity and splenic architecture seen in nfkbl(-/-) and c-rel(-/-) mice were exacerbated in the double mutant mice. These findings demonstrate that in the B lineage overlapping roles for NF-K81 and c-Rel appear to be restricted to regulating the activation and function of mature cells

    Dok-related protein negatively regulates T cell development via its RasGTPase-activating protein and Nck docking sites

    Get PDF
    Downstream of kinase (Dok)–related protein (DokR, also known as p56dok/FRIP/Dok-R) is implicated in cytokine and immunoreceptor signaling in myeloid and T cells. Tyrosine phosphorylation induces DokR to bind the signal relay molecules, RasGTPase-activating protein (RasGAP) and Nck. Here, we have examined the function of DokR during hematopoietic development and the requirement for RasGAP and Nck binding sites in its biological function. Retroviral-mediated expression of DokR in bone marrow cells dramatically inhibited their capacity to form colonies in vitro in response to the cytokines macrophage colony–stimulating factor and stem cell factor, whereas responses to interleukin-3 and granulocyte macrophage colony–stimulating factor were only weakly affected. When introduced into lethally irradiated mice, hematopoietic cells expressing DokR showed a drastically reduced capacity to repopulate lymphoid tissues. Most notably, DokR dramatically reduced repopulation of the thymus, in part by reducing the number of T cell precursors seeding in the thymus, but equally, through inhibiting the transition of CD4−CD8− to CD4+CD8+ T cells. Consequently, the number of mature peripheral T cells was markedly reduced. In contrast, a minimal effect on B cell and myeloid lineage development was observed. Importantly, functional RasGAP and Nck binding sites were found to be essential for the biological effects of DokR in vitro and in vivo

    c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells

    Get PDF
    During thymopoiesis, a unique program of gene expression promotes the development of CD4 regulatory T (T reg) cells. Although Foxp3 maintains a pattern of gene expression necessary for T reg cell function, other transcription factors are emerging as important determinants of T reg cell development. We show that the NF-κB transcription factor c-Rel is highly expressed in thymic T reg cells and that in c-rel−/− mice, thymic T reg cell numbers are markedly reduced as a result of a T cell–intrinsic defect that is manifest during thymocyte development. Although c-Rel is not essential for TGF-β conversion of peripheral CD4+CD25− T cells into CD4+Foxp3+ cells, it is required for optimal homeostatic expansion of peripheral T reg cells. Despite a lower number of peripheral T reg cells in c-rel−/− mice, the residual peripheral c-rel−/− T reg cells express normal levels of Foxp3, display a pattern of cell surface markers and gene expression similar to those of wild-type T reg cells, and effectively suppress effector T cell function in culture and in vivo. Collectively, our results indicate that c-Rel is important for both the thymic development and peripheral homeostatic proliferation of T reg cells

    The role of NFkB in T-lymphocyte development and function

    No full text
    Initially identified as a nuclear factor in B cells, the family of N

    The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression

    No full text
    Rel and RelA, individually dispensable for lymphopoiesis, serve unique functions in activated B and T cells. Here their combined roles in lymphocyte development were examined in chimeric mice repopulated with c-rel(–/–) rela(–/–) fetal liver hemopoietic stem cells. Mice engrafted with double-mutant cells lacked mature IgM(lo)IgD(hi) B cells, and numbers of peripheral CD4(+) and CD8(+) T cells were markedly reduced. The absence of mature B cells was associated with impaired survival that coincided with reduced expression of bcl-2 and A1. bcl-2 transgene expression not only prevented apoptosis and increased peripheral B-cell numbers, but also induced further maturation to an IgM(lo)IgD(hi) phenotype. In contrast, the survival of double-mutant T cells was normal and the bcl-2 transgene could not rectify the peripheral T-cell deficit. These findings indicate that Rel and RelA serve essential, albeit redundant, functions during the later antigen-independent stages of B- and T-cell maturation, with these transcription factors promoting the survival of peripheral B cells in part by upregulating Bcl-2

    The Transcription Factors c-rel and RelA Control Epidermal Development and Homeostasis in Embryonic and Adult Skin via Distinct Mechanisms

    No full text
    Determining the roles of Rel/NF-κB transcription factors in mouse skin development with loss-of-function mutants has been limited by redundancy among these proteins and by embryonic lethality associated with the absence of RelA. Using mice lacking RelA and c-rel, which survive throughout embryogenesis on a tumor necrosis factor alpha (TNF-α)-deficient background (rela(−/−) c-rel(−/−) tnfα(−/−)), we show that c-rel and RelA are required for normal epidermal development. Although mutant fetuses fail to form tylotrich hair and have a thinner epidermis, mutant keratinocyte progenitors undergo terminal differentiation to form an outer cornified layer. Mutant basal keratinocytes are abnormally small, exhibit a delay in G(1) progression, and fail to form keratinocyte colonies in culture. In contrast to the reduced proliferation of mutant keratinocytes during embryogenesis, skin grafting experiments revealed that the mutant epidermis develops a TNF-α-dependent hyperproliferative condition. Collectively, our findings indicate that RelA and c-rel control the development of the epidermis and associated appendages during embryogenesis and regulate epidermal homeostasis in a postnatal environment through the suppression of innate immune-mediated inflammation

    The NF-κB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties

    No full text
    The role of specific members of the NF-κB family of transcription factors in CD8 T-cell selection and development is largely unknown. Here, we show that mice lacking NF-κB1 develop a unique population of conventional CD8 single-positive (SP) thymocytes with memory T cell-like properties that populate peripheral immune organs. Development of this memory-like population is not due to PLZF + thymocytes and instead coincides with changes in CD8 T-cell selection. These include a reduction in the efficiency of negative selection and a dependence on MHC class Ia or Ib expressed by haematopoietic cells. These findings indicate that NF-κB1 regulates multiple events in the thymus that collectively inhibit the excess development of CD8 + thymocytes with memory cell characteristics. © 2012 European Molecular Biology Organization | All Rights Reserved
    corecore