33 research outputs found

    The Notch pathway drives the ability of the bone marrow niche to promote RNA editing in multiple myeloma

    Get PDF
    Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, and despite all the therapeutic advances it remains incurable due to the development of drug resistance. Recently, RNA editing has emerged as one of the important mechanisms that determines expression variability and therefore may be involved in the development of resistance to standard therapy. This process is mediated by adenosine deaminase acting on RNA (ADAR) enzymes that convert adenosines to inosines (A-->I editing) in double-stranded RNA (dsRNA) substrates. We hypothesize that ADAR1 activation in MM cells may be promoted by the normal cells of the bone marrow (BM) niche through the release of pro-tumor factor controlled by the oncogenic Notch pathway. Indeed, Notch is known to be hyperactivated in myeloma and it is crucial for the pathologic crosstalk between tumor cells and the surrounding BM microenvironment. Aim of this work was to investigate how the Notch pathway contributes to the ability of the BM microenvironment stromal cells on their ability to boost RNA editing and drug resistance in MM, in order to provide the rationale for a Notch-directed therapy that may allow to inhibit the progression of this disease

    Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple myeloma (MM) is a fatal malignancy ranking second in prevalence among hematological tumors. Continuous efforts are being made to develop innovative and more effective treatments. The preclinical evaluation of new therapies relies on the use of murine models of the disease.</p> <p>Methods</p> <p>Here we describe a new MM animal model in NOD-Rag1null IL2rgnull (NRG) mice that supports the engraftment of cell lines and primary MM cells that can be tracked with the tumor antigen, AKAP-4.</p> <p>Results</p> <p>Human MM cell lines, U266 and H929, and primary MM cells were successfully engrafted in NRG mice after intravenous administration, and were found in the bone marrow, blood and spleen of tumor-challenged animals. The AKAP-4 expression pattern was similar to that of known MM markers, such as paraproteins, CD38 and CD45.</p> <p>Conclusions</p> <p>We developed for the first time a murine model allowing for the growth of both MM cell lines and primary cells in multifocal sites, thus mimicking the disease seen in patients. Additionally, we validated the use of AKAP-4 antigen to track tumor growth <it>in vivo </it>and to specifically identify MM cells in mouse tissues. We expect that our model will significantly improve the pre-clinical evaluation of new anti-myeloma therapies.</p

    SUMMARY

    No full text
    Notch history begins in 1919 with Thomas Hunt Morgan studies on fruit fly mutants. From then, this gene aroused lively interest in the scientific community since it is involved in a wide variety of processes, including morphogenesis, tissue homeostasis, and stem cell maintenance. Deregulation of Notch signaling characterizes several human tumors. Hematopoietic system is affected by mutations of Notch receptors, Notch ligands, and proteins controlling their stability. Approximately 60 % T acute lymphoblastic leukemia (T-ALL) patients carry activating Notch1 mutations prompting blasts growth. In addition, multiple myeloma is characterized by Notch signaling hyper-activation due to an abnormal expression of the Jagged2 ligand; this affects not only myeloma cells, but also their interaction with bone marrow microenvironment, influencing tumor burden and bone disease. These findings make Notch a rational target of a therapeutic approach. Inhibitors of the Notch activating enzyme, γ-Secretase, have been successfully used in vitro and in vivo and are currently under clinical trials for T-ALL and breast cancer. Yet a wide use of these inhibitors is prevented by frequently occurring drug resistance. To elucidate the mechanism underlying this phenomenon, a number of pathways have been identified mediating Notch biological effects: AKT and c-Myc are frequently deregulated in leukemic patients and account for resistance to γ-Secretase inhibitors by acting downstream Notch receptor. Therefore, the interaction of Notch with other cancer-associated proteins should be clarified to predict the biological outcome of a Notch targeted therapy and possibly, to exploit combined treatments against the ke

    Differential Modulation of Matrix Metalloproteinases-2 and -7 in LAM/TSC Cells

    No full text
    Matrix metalloproteinase (MMP) dysregulation is implicated in several diseases, given their involvement in extracellular matrix degradation and cell motility. In lymphangioleiomyomatosis (LAM), a pulmonary rare disease, MMP-2 and MMP-9 have been detected at high levels in serum and urine. LAM cells, characterized by a mutation in the tuberous sclerosis complex (TSC)1 or TSC2, promote cystic lung destruction. The role of MMPs in invasive and destructive LAM cell capability has not yet been fully understood. We evaluated MMP-2 and MMP-7 expression, secretion, and activity in primary LAM/TSC cells that bear a TSC2 germline mutation and an epigenetic modification and depend on epidermal growth factor (EGF) for survival. 5-azacytidine restored tuberin expression with a reduction of MMP-2 and MMP-7 levels and inhibits motility, similarly to rapamycin and anti-EGFR antibody. Both drugs reduced MMP-2 and MMP-7 secretion and activity during wound healing and decreased their expression in lung nodules of a LAM mouse model. In LAM/TSC cells, MMP-2 and MMP-7 are dependent on tuberin expression, cellular adhesion, and migration. MMPs appears sensitive to rapamycin and anti-EGFR antibody only during cellular migration. Our data indicate a complex and differential modulation of MMP-2 and MMP-7 in LAM/TSC cells, likely critical for lung parenchyma remodeling during LAM progression

    Notch: From fly wings to human hematological tumors

    No full text
    Notch history begins in 1919 with Thomas Hunt Morgan studies on fruit fly mutants. From then, this gene aroused lively interest in the scientific community since it is involved in a wide variety of processes, including morphogenesis, tissue homeostasis, and stem cell maintenance. Deregulation of Notch signaling characterizes several human tumors. Hematopoietic system is affected by mutations of Notch receptors, Notch ligands, and proteins controlling their stability. Approximately 60% T acute lymphoblastic leukemia (T-ALL) patients carry activating Notch1 mutations prompting blasts growth. In addition, multiple myeloma is characterized by Notch signaling hyper-activation due to an abnormal expression of the Jagged2 ligand; this affects not only myeloma cells, but also their interaction with bone marrow microenvironment, influencing tumor burden and bone disease. These findings make Notch a rational target of a therapeutic approach. Inhibitors of the Notch activating enzyme, γ-Secretase, have been successfully used in vitro and in vivo and are currently under clinical trials for T-ALL and breast cancer. Yet a wide use of these inhibitors is prevented by frequently occurring drug resistance. To elucidate the mechanism underlying this phenomenon, a number of pathways have been identified mediating Notch biological effects: AKT and c-Myc are frequently deregulated in leukemic patients and account for resistance to γ-Secretase inhibitors by acting downstream Notch receptor. Therefore, the interaction of Notch with other cancer-associated proteins should be clarified to predict the biological outcome of a Notch targeted therapy and possibly, to exploit combined treatments against the key deregulated elements in Notch-associated cancers

    Table_3_Reduction of Movement in Neurological Diseases: Effects on Neural Stem Cells Characteristics.XLSX

    No full text
    <p>Both astronauts and patients affected by chronic movement-limiting pathologies face impairment in muscle and/or brain performance. Increased patient survival expectations and the expected longer stays in space by astronauts may result in prolonged motor deprivation and consequent pathological effects. Severe movement limitation can influence not only the motor and metabolic systems but also the nervous system, altering neurogenesis and the interaction between motoneurons and muscle cells. Little information is yet available about the effect of prolonged muscle disuse on neural stem cells characteristics. Our in vitro study aims to fill this gap by focusing on the biological and molecular properties of neural stem cells (NSCs). Our analysis shows that NSCs derived from the SVZ of HU mice had shown a reduced proliferation capability and an altered cell cycle. Furthermore, NSCs obtained from HU animals present an incomplete differentiation/maturation. The overall results support the existence of a link between reduction of exercise and muscle disuse and metabolism in the brain and thus represent valuable new information that could clarify how circumstances such as the absence of load and the lack of movement that occurs in people with some neurological diseases, may affect the properties of NSCs and contribute to the negative manifestations of these conditions.</p
    corecore