156 research outputs found

    Stiffness and position control of a prosthetic wrist by means of an EMG interface

    Get PDF
    In this paper, we present a novel approach for decoding electromyographic signals from an amputee and for interfacing them with a prosthetic wrist. The model for the interface makes use of electromyographic signals from electrodes placed in agonistic and antagonistic sides of the forearm. The model decodes these signals in order to control both the position and the stiffness of the wrist

    Compliance Analysis of an Under-Actuated Robotic Finger

    Get PDF
    Under-actuated robotic hands have multiple applications fields, like prosthetics and service robots. They are interesting for their versatility, simple control and minimal component usage. However, when external forces are applied on the finger-tip, the mechanical structure of the finger might not be able to resist them. In particular, only a subset of disturbance forces will meet finite compliance, while forces in other directions impose null-space motions (infinite compliance). Motivated by the observation that infinite compliance (i.e. zero stiffness) can occur due to under-actuation, this paper presents a geometric analysis of the finger-tip compliance of an under-actuated robotic finger. The analysis also provides an evaluation of the finger design, which determines the set of disturbances that is resisted by finite compliance. The analysis relies on the definition of proper metrics for the joint-configuration space. Trivially, without damping, the mass matrix is used as a metric. However, in the case of damping (power losses), the physical meaningful metric to be used is found to be the damping matrix. Simulation experiments confirm the theoretical results

    Port-based modeling and optimal control for a new very versatile energy efficient actuator

    Get PDF
    In this paper, we analyze in depth the innovative very versatile and energy efficient (V2E2) actuator proposed in Stramigioli et al. (2008). The V2E2 actuator is intended to be used in all kind of robotics and powered prosthetic applications in which energy consumption is a critical issue. In particular, this work focuses on the development of a port-based Hamiltonian model of the V2E2 and presents an optimal control architecture which exploits the intrinsic hybrid characteristics of the actuator design. The optimal control guarantees the minimization of dissipative power losses during torque tracking transients

    Modeling and Control of Unmanned Aerial Vehicles: A Port-Hamiltonian Approach

    Get PDF
    Recently, in robotics there is an increasing interest in the field of unmanned aerial vehicles (UAVs) due to the existence of diverse potential applications in the civilian sector. UAVs are characterized by their under-actuatedness and\ud highly nonlinear and inherently coupled dynamics, which makes the design of an autonomous controller challenging. To address this problem, developing a competent dynamic model of the UAV is an essential step. Such a dynamic..

    Energy Efficient Actuation with Variable Stiffness Actuators

    Get PDF
    Research effort in the field of variable stiffness actuators is steadily increasing, due to their wide range of possible applications and their advantages. In literature, var- ious control methods have been proposed, solving particular problems in human-robot and robot-environment interaction applications, in which the mechanical compliance introduced by variable stiffness actuators has been shown to be beneficial. In this work, we focus on achieving energy efficient actuation of robotic systems using variable stiffness actuators. In particular, we aim to exploit the energy storing properties of the internal elastic elements

    Novel Dexterous Robotic Finger Concept with Controlled Stiffness

    Get PDF
    This paper introduces a novel robotic finger concept for variable impedance grasping in unstructured tasks. The novel robotic finger combines three key features: minimal actuation, variable mechanical compliance and full manipulability. This combination of features allows for a minimal component design, while reducing control complexity and still providing required dexterity and grasping capabilities. The conceptual properties (such as variable compliance) are studied in a port-Hamiltonian framework

    Mechatronic design & adaptive control of a lower limb prosthesis

    Get PDF
    Lower limb prostheses have undergone significant developments in the last decades. However, there are several areas that have a scope for improvement through simplifications in the mechatronic design as well as in the control architecture. This paper focuses on the mechatronic design of a powered transtibial prosthesis and on the implementation of a control architecture, which is based on an adaptive frequency oscillator method that makes use of one inertial measurement unit. The control is capable of providing a positive push-off power to the prosthesis during level-ground walking and of adapting the response of the prosthesis to different walking speeds. The control architecture has been implemented and validated on a 3D printed prototype of a transtibial prosthesis. The experimental results show that the ankle joint can mimic the angle of a healthy subject with a root mean square error of 2.9° and that the gait transitions are tracked within two gait cycles. </p

    Human-like Walking with Compliant Legs

    Get PDF
    This work presents a novel approach to robotic bipedal walking. Based on the bipedal spring-mass model, which is known to closely describe human-like walking behavior, a robot has been designed that approaches the ideal model as closely as possible. The compliance of the springs is controllable by means of variable stiffness actuators. The controllable stiffness allows the gait to be stabilized against external disturbances
    corecore