998 research outputs found

    Effect of dietary vitamin E content on the CLA, cholesterol and triglycerides composition of Italian Mediterranean buffalo meat

    Get PDF
    The composition of fatty acids, CLA, triglycerides and cholesterol in intramuscular fat depots of buffalo meat was determined using high-resolution gas chromatography to investigate the influence of dietary vitamin E content. Three groups of Italian Mediterranean buffalo calves were fed on three diets with high (H), low (L) and zero (Z) vitamin E contents. The animal were slaughtered at 15 months and three muscles were dissected on the half-carcass: Longissimus dorsi (LD), Tricipitis brachii (TB) and Semimembranosus (Sm). Lipid extracts from muscles (g/100g f.m.: 0.82 for LD, 0.66 for TB and 0.48 for Sm) were used to quantify the amount (mg/100g of lipids) of fatty acids, total conjugated linoleic acid (CLA) and cholesterol. The effects of dietary vitamin E content were significant (P<0.05) but marginal. Comparison of lipid extracts from muscles showed that C18:2 and total CLA were higher respectively in TB and Sm muscles when vitamin content was low. Also Cholesterol content variation was affected by low dietary vitamin E: LD muscle has a lower cholesterol concentration for diet L. The different vitamin content of two diets did not significantly influence the composition of triglycerides. Considering the low lipid concentrations (<1g/100 g of fresh muscle) none of the meat muscles should be considered a significant source of CLA

    From flower to honey bouquet: possible markers for the botanical origin of Robinia honey.

    Get PDF
    Flowers are complex structures devoted to pollinator attraction, through visual as well as chemical signals. As bees collect nectar on flowers to produce honey, some aspects of floral chemistry are transferred to honey, making chemical markers an important technique to identify the botanical and geographical origins of honey. We applied a new approach that considers the simultaneous analysis of different floral parts (petals, stamens + pistils, calyxes + nectarines, and nectar) and the corresponding unifloral honey. We collected fresh flowers of Robinia pseudoacacia L. (black locust), selected five samples of Robinia honey from different geographical origins, applied SPME-GC/MS for volatile analyses, and defined the chemical contribution added by different floral parts to the honey final bouquet. Our results show that honey blends products from nectar as well as other flower parts. Comparing honey and flower profiles, we detected compounds coming directly from flower parts but not present in the nectar, such as hotrienol and β-pinene. These may turn out to be of special interest when selecting floral markers for the botanical origin of honey

    Physical and Oxidative Stability of Functional olive Oil-in-Water Emulsions Formulated Using Olive Mill Wastewater and Whey Proteins

    Get PDF
    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated by analysing the creaming rate, mean particle size distribution and mean droplet size, viscosity and rheological properties, while chemical stability was assessed through the measurement of primary and secondary oxidation products. The rheological behaviour and creaming stability of the emulsions were dramatically improved by using xanthan gum, whereas the concentration of WPI and the addition of encapsulated OMW phenolics did not result in a significant improvement of physical stability. The formation of oxidation products was higher when higher concentrations of encapsulated polyphenols were used, indicating a possible binding with the WPI added in the system as a natural emulsifier. This paper might help in solving the issue of using the olive mill wastewater from olive processing in formulating functional food products with high antioxidant activity and improved health properties

    Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy)

    Get PDF
    ‘Oliva di Gaeta’ is almost certainly the most important and well-known PDO denomination for table olives in Italy. Their production is based on a specific two-stage trade preparation called the ‘Itrana’ method. In this work, we investigated how variations in the duration of the initial water fermentation (i.e., 15 and 30 days) and the salt concentration (i.e., 6% and 8% NaCl) influence the chemical features, microbial dynamics, polyphenols, volatile organic compounds, and sensory features of ‘Oliva di Gaeta’. The time of the addition of salt did not affect the final concentration in the brine, but a longer initial water fermentation (before salt addition) led to lower pH values. The bacterial count constantly increased until the salt addition (i.e., either 15 or 30 days), while the yeast population peaked on day 30. Generally, the two different salt concentrations did not affect the count of microorganisms at the end of fermentation, with the only exception being a higher lactic acid bacteria count for the treatment with 6% salt added at 30 days. At commercial maturity, the crucial bitter tastant oleuropein was not completely removed from the drupes, and differences in salt concentration and the length of the first-stage water fermentation did not influence its content at the end of olive curing. Richer volatile profiles of olives were detected with higher-salt treatments, while the combination of low salt and early saline treatment provided a more distinct profile. Longer initial water fermentation caused a small increase in some phenolic compounds (e.g., iso-verbascoside, verbascoside, and hydroxytyrosol-glucoside). A panel test indicated that salt application at 30 days resulted in a more “Sour” and “Bitter” taste, irrespective of the salt concentration. The low salt concentration coupled with the late saline treatment resulted in more “Fruity” notes, probably due to the higher production of esters by lactobacilli. The slightly bitter perception of the olives was consistent with the partial removal of oleuropein. Our work revealed the characteristics of the ‘Itrana’ method and that the variation in salt concentration and its time of application changes parameters ranging from the microbial dynamics to the sensory profile. Specifically, our data indicate that 6% NaCl coupled with a longer initial water fermentation is the most different condition: it is less effective in blocking microbial growth but, at the same time, is more potent in altering the nutritional (e.g., polyphenols) and sensorial qualities (e.g., bitterness and fruitiness) of ‘Oliva di Gaeta’
    corecore