42 research outputs found

    Antibody acquisition models: a new tool for serological surveillance of malaria transmission intensity

    Get PDF
    Serology has become an increasingly important tool for the surveillance of a wide range of infectious diseases. It has been particularly useful to monitor malaria transmission in elimination settings where existing metrics such as parasite prevalence and incidence of clinical cases are less sensitive. Seroconversion rates, based on antibody prevalence to Plasmodium falciparum asexual blood-stage antigens, provide estimates of transmission intensity that correlate with entomological inoculation rates but lack precision in settings where seroprevalence is still high. Here we present a new and widely applicable method, based on cross-sectional data on individual antibody levels. We evaluate its use as a sero-surveillance tool in a Tanzanian setting with declining malaria prevalence. We find that the newly developed mathematical models produce more precise estimates of transmission patterns, are robust in high transmission settings and when sample sizes are small, and provide a powerful tool for serological evaluation of malaria transmission intensity

    Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector <it>A. gambiae</it>. However, malaria transmission in tropical Africa is sustained by three main vectors (<it>A. gambiae</it>, <it>Anopheles arabiensis </it>and <it>Anopheles funestus</it>) and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the <it>A. gambiae </it>species complex whereas the <it>A. funestus </it>homologue, fSG6, is more divergent (80% identity with gSG6). The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6.</p> <p>Methods</p> <p>The <it>A. funestus </it>SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large <it>A. gambiae </it>prevalence (>75%). Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed.</p> <p>Results</p> <p>According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level.</p> <p>Conclusions</p> <p>Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission and evaluate vector control measures, especially in conditions of low malaria transmission and/or reduced vector density. The <it>Anopheles stephensi </it>SG6 protein also shares 80% identity with gSG6, suggesting the attractive possibility that the <it>A. gambiae </it>protein may also be useful to assess human exposure to several Asian malaria vectors.</p

    Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors

    Get PDF
    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens

    IgG Responses to Anopheles gambiae Salivary Antigen gSG6 Detect Variation in Exposure to Malaria Vectors and Disease Risk

    Get PDF
    Assessment of exposure to malaria vectors is important to our understanding of spatial and temporal variations in disease transmission and facilitates the targeting and evaluation of control efforts. Recently, an immunogenic Anopheles gambiae salivary protein (gSG6) was identified and proposed as the basis of an immuno-assay determining exposure to Afrotropical malaria vectors. In the present study, IgG responses to gSG6 and 6 malaria antigens (CSP, AMA-1, MSP-1, MSP-3, GLURP R1, and GLURP R2) were compared to Anopheles exposure and malaria incidence in a cohort of children from Korogwe district, Tanzania, an area of moderate and heterogeneous malaria transmission. Anti-gSG6 responses above the threshold for seropositivity were detected in 15% (96/636) of the children, and were positively associated with geographical variations in Anopheles exposure (OR 1.25, CI 1.01–1.54, p = 0.04). Additionally, IgG responses to gSG6 in individual children showed a strong positive association with household level mosquito exposure. IgG levels for all antigens except AMA-1 were associated with the frequency of malaria episodes following sampling. gSG6 seropositivity was strongly positively associated with subsequent malaria incidence (test for trend p = 0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune protection. While the technique requires further evaluation in a range of malaria endemic settings, our findings suggest that the gSG6 assay may have a role in the evaluation and planning of targeted and preventative anti-malaria interventions

    Bald16, a Mar-like transcriptional regulator is involved in the detoxification of aromatic compounds in Sulfolobus solfataricus.

    No full text
    In the archaeon Sulfolobus solfataricus a DNA binding protein, Bald16 (Sso1352), has been identified whose levels are higher when cells are grown in the presence of the toxic benzaldehyde, substrate of the Sso2536ADH enzyme; it has been proposed that this protein could act as a transcriptional activator triggering adh expression to protect cells from an environmental stress due to phenolic-derived aldehydes. Bald16 has a bacterial homologue belonging to the Mar (Multiple Antibiotic Resistance) family of regulators involved in the control of gene expression of aromatic compound metabolism and antibiotic resistance. The gene encoding for the transcriptional regulator, has been expressed in E. coli and the recombinant protein purified to homogeneity. The protein is indeed a dimeric DNA binding protein, which binds site-specifically to both the adh and bald16 promoters; it also specifically interacts with benzaldehyde, as revealed by CD spectra analysis. In S.solfataricus, Bald16 is co-transcribed with an upstream gene (Sso1352) encoding a putative multidrug transporter (Mar-like operon). Northern blot analysis revealed that the operon might be autoregulated when cells are grown in the presence of aromatic aldehydes. Western blot analysis also revealed an increased Bald16 expression in cell extracts prepared from the same cells. These results reasonably strengthen the hypothesis of a resistance mechanism, modulated by Bald16, based on the coordinate expression of the adhgene and the Mar-like operon, in response to stress determined by phenolic-derived materials

    A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein

    No full text
    A whole-cell bacterial biosensor for measuring aqueous concentrations of aromatic aldehydes was developed. It is based on the E. coli BL21DE3(RIL) expressing the green fluorescent protein under the control of an alcohol dehydrogenase inducible promoter belonging to the archaeon Sulfolobus solfataricus (Sso2536adh promoter). Since it was previously reported that the BldR regulatory protein is the transcription factor required for aromatic aldehyde response in S. solfataricus, the gene encoding for the sensor protein BldR was co-expressed in the biosensor strain on a different compatible plasmid. Gel mobility shift assays showed that the purified recombinant protein can bind specifically to the Sso2536adh promoter. We demonstrated the ability of the archaeal promoter and the BldR transcription factor to operate in a bacterial context to drive active gene expression in a hybrid archaeal/eukaryal fusion. Furthermore, the E. coli BL21DE3(RIL) biosensor strain displayed a specific response and high sensitivity to the different aromatic aldehydes used, suggesting its potential low-cost application to environmentally relevant samples

    MarR-like transcriptional regulator involved in the detoxification of aromatic compounds in Sulfolobus solfataricus.

    No full text
    A DNA binding protein, BldR, was identified in the crenarchaeon Sulfolobus solfataricus as a protein 5- to 10-fold more abundant in cells grown in the presence of toxic aldehydes; it binds to regulatory sequences located upstream of an alcohol dehydrogenase gene (Sso2536). BldR is homologous to bacterial representatives of the MarR (multiple antibiotic resistance) family of transcriptional regulators that mediate response to multiple environmental stresses. Transcriptional analysis revealed that the bldR gene was transcribed in a bicistronic unit composed of the genes encoding the transcriptional regulator (Ssol352) and a putative multidrug transporter (Sso1351) upstream. By homology to bacterial counterparts, the bicistron was named the mar-like operon. The level of mar-like operon expression was found to be increased at least 10-fold in response to chemical stress by aromatic aldehydes. Under the same growth conditions, similar enhanced in vivo levels of Sso2536 gene transcript were also measured. The gene encoding BldR was expressed in E. coli, and the recombinant protein was purified to homogeneity. DNA binding assays demonstrated that the protein is indeed a transcription factor able to recognize site specifically both the Sso2536 and mar-like promoters at sites containing palindromic consensus sequences. Benzaldehyde, the substrate of ADH(Ss), stimulates DNA binding of BldR at both promoters. The role of BldR in the auto-activation as well as in the regulation of the Sso2536 gene, together with results of increased operon and gene expression under conditions of exposure to aromatic aldehydes, indicates a novel coordinate regulatory mechanism in cell defense against stress by aromatic compounds
    corecore