5,989 research outputs found

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling students’ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (μ = 25.8%) and student satisfaction (μ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank

    Full text link
    Quantum teleportation enables deterministic and faithful transmission of quantum states, provided a maximally entangled state is pre-shared between sender and receiver, and a one-way classical channel is available. Here, we prove that these resources are not only sufficient, but also necessary, for deterministically and faithfully sending quantum states through any fixed noisy channel of maximal rank, when a single use of the cannel is admitted. In other words, for this family of channels, there are no other protocols, based on different (and possibly cheaper) sets of resources, capable of replacing quantum teleportation.Comment: 4 pages, comments are welcom

    Corporate amnesia in the micro business environment

    Get PDF
    Corporate amnesia is a phenomenon that has persistently threatened the livelihood of business organizations and their success in commercial activity. Several substantial studies on this observable fact have been undertaken with focus primarily aimed at the large corporations and the small to medium sized organizations. This vulnerability is however evermore present and significant within the smaller of businesses. In the micro enterprise, the impact of corporate amnesia is realized when even a single member of staff is absent for any lengthy period of time or vacates their post altogether. With more than 80% of the workforce in the US and separately in the UK directly engaged within a micro enterprise, the competitive benefits that can potentially be realized by addressing corporate amnesia is significant. This paper will identify the main causes of corporate amnesia within the micro business environment and propose a suitable framework for the enterprise to effectively facilitate the adoption of Knowledge Management and realize the associated competitive benefits

    Bridging the digital divide for e-learning students through adaptive VLEs

    Get PDF
    Virtual Learning Environments (VLEs) are required to be highly effective and easy to use as they serve as the primary institutional portal between students and academics. There are currently a number of challenges that are caused due to the modernized digital divide, with a significant limitation being the inability of information systems to adapt to the users' technological platform, broadband quality and device in use to access the online system. This paper focuses on the limitations that students encounter when accessing VLEs within Higher Educational Institutes (HEIs). This research aims to primarily review and provide critical analysis of current VLE frameworks, as well as assess restrictions based on several demographics including content adaptation and technical aspects. An algorithmic system is developed to analyze students' individualistic needs, undertake adaption and personalization of the VLE, and hence ensure consistent and efficient access to academic web resources and functionalitie

    On the Mathematical and Geometrical Structure of the Determining Equations for Shear Waves in Nonlinear Isotropic Incompressible Elastodynamics

    Full text link
    Using the theory of 1+11+1 hyperbolic systems we put in perspective the mathematical and geometrical structure of the celebrated circularly polarized waves solutions for isotropic hyperelastic materials determined by Carroll in Acta Mechanica 3 (1967) 167--181. We show that a natural generalization of this class of solutions yields an infinite family of \emph{linear} solutions for the equations of isotropic elastodynamics. Moreover, we determine a huge class of hyperbolic partial differential equations having the same property of the shear wave system. Restricting the attention to the usual first order asymptotic approximation of the equations determining transverse waves we provide the complete integration of this system using generalized symmetries.Comment: 19 page

    Geometry for the accelerating universe

    Get PDF
    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.Comment: 4 pages, 1 figur

    Endovascular repair for acute traumatic transection of the descending thoracic aorta: experience of a single centre with a 12-years follow up

    Get PDF
    Background: Most blunt aortic injuries occur in the proximal proximal descending aorta causing acute transection of this vessel. Generally, surgical repair of the ruptured segment of aorta is associated with high rates of morbidity and mortality and in this view endovascular treatment seems to be a valid and safer alternative. Aim of this article is to review our experience with endovascular approach for the treatment of acute traumatic rupture of descending thoracic aorta. Methods: From April 2002 to November 2014, 11 patients (9 males and 2 females) were referred to our Department with a diagnosis of acute transection of thoracic aorta. Following preoperative Computed Tomography (CT) evaluation, thoracic endovascular aortic repair (TEVAR) with left subclavian artery coverage was performed. Follow-up consisted clinical and instrumental (CT, Duplex ultrasound) controls at discharge, 1, 3 and 6 months and yearly thereafter. Results: At 12-year follow up, the overall survival for the entire patients cohort was 100 %, no major or minor neurological complications and no episode of left arm claudication occurred. Cardiovascular, respiratory and bleeding complications, in the early period, was represented by minor, non fatal events. No stent graft failure, collapse, leak or distal migration were detected at CT scan during the entire follow up period. Conclusions: According to our experience, despite the small number of patient population, TEVAR procedure with with left subclavian artery coverage, performed in emergency settings, seems to provide excellent long term results. Trials registration: The protocol was registered at a public trials registry, www.clinicaltrials.gov (trial identifier NCT02376998)

    Explaining multi-threaded task scheduling using tangible user interfaces in higher educational contexts

    Get PDF
    Endorsing the advantages of computer-based interaction within the educational domain, this study analysis the potential for tangible interactive technology to mitigate the challenges faced by higher educational institutes in explaining abstracted technical concepts. Implemented within a novel within the educational domain, this paper evaluates the efficacy of adopting a tangible user interface (TUI) to aid in the conceptual understanding of multi-threaded task scheduling and programming by undergraduate IT students. Making use of physical object representations, a description is provided for the distinctive development of a collaborative system that allows students to interact with and visualize the scheduling of multiple software threads onto a computer processes. The paper quantitatively studies the usefulness of the proposed TUI system with respect to traditional lectures by deploying the system within a university computing degree. Evaluation analysis of the obtained results highlight a significant improvement in the students' abilities to grasp the abstract and complex notions of multi-threading, thus validating the potential of the proposed study

    Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5)

    Full text link
    Convergent lines of evidence suggest that globular clusters host multiple stellar populations. It appears that they experience at least two episodes of star formation whereby a fraction of first-generation stars contribute astrated ejecta to form the second generation(s). To identify the polluting progenitors we require distinguishing chemical signatures such as that provided by lithium. Theoretical models predict that lithium can be synthesised in AGB stars, whereas no net Li production is expected from other candidates. It has been shown that in order to reproduce the abundance pattern found in M4, Li production must occur within the polluters, favouring the AGB scenario. Here we present Li and Al abundances for a large sample of RGB stars in M12 and M5. These clusters have a very similar metallicity, whilst demonstrating differences in several cluster properties. Our results indicate that the first-generation and second-generation stars share the same Li content in M12; we recover an abundance pattern similar to that observed in M4. In M5 we find a higher degree of complexity and a simple dilution model fails in reproducing the majority of the stellar population. In both clusters we require Li production across the different stellar generations, but production seems to have occurred to different extents. We suggest that such a difference might be related to the cluster mass with the Li production being more efficient in less-massive clusters. This is the first time a statistically significant correlation between the Li spread within a GC and its luminosity has been demonstrated. Finally, although Li-producing polluters are required to account for the observed pattern, other mechanisms, such as MS depletion, might have played a role in contributing to the Li internal variation, though at relatively low level.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 14 figure

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles
    • …
    corecore