2,236 research outputs found

    Augmented Hypothalamic Corticotrophin-Releasing Hormone mRNA and Corticosterone Responses to Stress in Adult Rats Exposed to Perinatal Hypoxia

    Get PDF
    Stressful events before or just after parturition alter the subsequent phenotypical response to stress in a general process termed programming. Hypoxia during the period before and during parturition, and in the postnatal period, is one of the most common causes of perinatal distress, morbidity, and mortality. We have found that perinatal hypoxia (prenatal day 19 to postnatal day 14) augmented the corticosterone response to stress and increased basal corticotrophin-releasing hormone (CRH) mRNA levels in the parvocellular portion of the paraventricular nucleus (PVN) in 6-month-old rats. There was no effect on the levels of hypothalamic parvocellular PVN vasopressin mRNA, anterior pituitary pro-opiomelanocortin or CRH receptor-1 mRNA, or hippocampus glucocorticoid receptor mRNA. We conclude that hypoxia spanning the period just before and for several weeks after parturition programmes the hypothalamic-pituitary-adrenal axis to hyper-respond to acute stress in adulthood, probably as a result of drive from the parvocellular CRH neurones

    Dollo's law and the death and resurrection of genes.

    Full text link

    The Effect of High Dose Total Body Irradiation on ACTH, Corticosterone, and Catecholamines in the Rat

    Get PDF
    Total body irradiation (TBI) or partial body irradiation is a distinct risk of accidental, wartime, or terrorist events. Total body irradiation is also used as conditioning therapy before hematopoietic stem cell transplantation. This therapy can result in injury to multiple tissues and might result in death as a result of multiorgan failure. The hypothalamic–pituitary–adrenal (HPA) axis could play a causative role in those injuries, in addition to being activated under conditions of stress. In a rat model of TBI, we have established that radiation nephropathy is a significant lethal complication, which is caused by hypertension and uremia. The current study assessed HPA axis function in rats undergoing TBI. Using a head-shielded model of TBI, we found an enhanced response to corticotropin-releasing hormone (CRH) in vitro in pituitaries from irradiated compared with nonirradiated rats at both 8 and 70 days after 10-Gy single fraction TBI. At 70, but not 8 days, plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels were increased significantly in irradiated compared with nonirradiated rats. Plasma aldosterone was not affected by TBI at either time point, whereas plasma renin activity was decreased in irradiated rats at 8 days. Basal and stimulated adrenal steroid synthesis in vitro was not affected by TBI. In addition, plasma epinephrine was decreased at 70 days after TBI. The hypothalamic expression of CRH messenger RNA (mRNA) and hippocampal expression of glucocorticoid receptor mRNA were unchanged by irradiation. We conclude that the hypertension of radiation nephropathy is not aldosterone or catecholamine-dependent but that there is an abscopal activation of the HPA axis after 10 Gy TBI. This activation was attributable at least partially to enhanced pituitary ACTH production

    Gaseous Electronics

    Get PDF
    Contains research objectives and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E

    Measuring Equality in Machine Learning Security Defenses

    Full text link
    The machine learning security community has developed myriad defenses for evasion attacks over the past decade. An understudied question in that community is: for whom do these defenses defend? In this work, we consider some common approaches to defending learned systems and whether those approaches may offer unexpected performance inequities when used by different sub-populations. We outline simple parity metrics and a framework for analysis that can begin to answer this question through empirical results of the fairness implications of machine learning security methods. Many methods have been proposed that can cause direct harm, which we describe as biased vulnerability and biased rejection. Our framework and metric can be applied to robustly trained models, preprocessing-based methods, and rejection methods to capture behavior over security budgets. We identify a realistic dataset with a reasonable computational cost suitable for measuring the equality of defenses. Through a case study in speech command recognition, we show how such defenses do not offer equal protection for social subgroups and how to perform such analyses for robustness training, and we present a comparison of fairness between two rejection-based defenses: randomized smoothing and neural rejection. We offer further analysis of factors that correlate to equitable defenses to stimulate the future investigation of how to assist in building such defenses. To the best of our knowledge, this is the first work that examines the fairness disparity in the accuracy-robustness trade-off in speech data and addresses fairness evaluation for rejection-based defenses.Comment: In Submissio

    An information-bearing seed for nucleating algorithmic self-assembly

    Get PDF
    Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is 17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication

    Gaseous Electronics

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
    • …
    corecore