795 research outputs found

    QGP fireball explosion

    Get PDF
    We identify the major physics milestones in the development of strange hadrons as an observable for both the formation of quark-gluon plasma, and of the ensuing explosive disintegration of deconfined matter fireball formed in relativistic heavy ion collisions at 160--20A GeV. We describe the physical properties of QGP phase and show agreement with the expectations based on an analysis of hadron abundances. We than also demonstrate that the m_t shape of hadron spectra is in qualitative agreement with the sudden breakup of a supercooled QGP fireball.Comment: 10 pages, incl. 4 figures J. Phys. G in press; presented at STRANGENESS2000 International Conference, Berkeley July 200

    Resonance Production in RHIC Collisions

    Full text link
    Results of resonance particle production measured at RHIC in sNN=\sqrt{s_{\rm NN}} = 200 GeV Au+Au collisions are compared to measurements in p+p and d+Au collisions in order to verify the existence of an extended hardronically interacting medium. Yield and momentum distributions of resonances maybe modified during the fireball lifetime due to resonance decay and the subsequent rescattering of their decay daughters as well as the regeneration of resonances from their decay products. Modified momentum spectra in heavy ion collisions may change the nuclear modification factor RAA_{\rm AA}. The influence on the elliptic flow v2_{2} due to late regeneration of resonances is discussed.Comment: 6 pages, 6 figures, Proceedings of the 22st Winter Workshop on Nuclear Dynamics, San Diago, California, 12-18 March, 200

    Strangeness and the discovery of quark-gluon plasma

    Full text link
    Strangeness flavor yield s and the entropy yield S are the observables of the deconfined quark-gluon state of matter which can be studied in the entire available experimental energy range at AGS, SPS, RHIC, and, in near future, at the LHC energy range. We present here a comprehensive analysis of strange, soft hadron production as function of energy and reaction volume. We discuss the physical properties of the final state and argue how evidence about the primordial QGP emerges.Comment: 16 pages: Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8 - 12, 2005, Salt Lake City, Kolkata, India, to appear in: Journal of Physics: Conference Serie

    SHARE with CHARM

    Full text link
    SHARE with CHARM program (SHAREv3) implements the statistical hadronization model description of particle production in relativistic heavy-ion collisions. Given a set of statistical parameters, SHAREv3 program evaluates yields and therefore also ratios, and furthermore, statistical particle abundance fluctuations. The physical bulk properties of the particle source is evaluated based on all hadrons produced, including the fitted yields. The bulk properties can be prescribed as a fit input complementing and/or replacing the statistical parameters. The modifications and improvements in the SHARE suite of programs are oriented towards recent and forthcoming LHC hadron production results including charm hadrons. This SHAREv3 release incorporates all features seen previously in SHAREv1.x and v2.x and, beyond, we include a complete treatment of charm hadrons and their decays, which further cascade and feed lighter hadron yields. This article is a complete and self-contained manual explaining and introducing both the conventional and the extended capabilities of SHARE with CHARM. We complement the particle list derived from the Particle Data Group tabulation composed of up, down, strange u,d,su,d,s quarks (including resonances) with hadrons containing charm c,cˉc,\bar c quarks. We provide a table of the charm hadron decays including partial widths. The branching ratios of each charm hadron decays add to unity, which is achieved by including some charm hadron decay channels based on theoretical consideration in the absence of direct experimental information. A very successful interpretation of all available LHC results has been already obtained using this program.Comment: 41 pages, 5 figures, 3 tables. Associated program available at http://www.physics.arizona.edu/~gtshare/SHARE/share.html (Computer Physics Communications in press

    Dynamics and freeze-out of hadron resonances at RHIC

    Get PDF
    Yields, rapidity and transverse momentum spectra of Δ++(1232)\Delta^{++}(1232), Λ(1520)\Lambda(1520), Σ±(1385)\Sigma^\pm(1385) and the meson resonances K0(892)K^0(892), Φ\Phi, ρ0\rho^0 and f0(980)f_0(980) are predicted. Hadronic rescattering leads to a suppression of reconstructable resonances, especially at low pp_\perp. A mass shift of the ρ\rho of 10 MeV is obtained from the microscopic simulation, due to late stage ρ\rho formation in the cooling pion gas.Comment: Proceedings of the Strange Quark Matter 2003, eprint version differs from published versio

    Resonance production from jet fragmentation

    Get PDF
    Short lived resonances are sensitive to the medium properties in heavy-ion collisions. Heavy hadrons have larger probability to be produced within the quark gluon plasma phase due to their short formation times. Therefore heavy mass resonances are more likely to be affected by the medium, and the identification of early produced resonances from jet fragmentation might be a viable option to study chirality. The high momentum resonances on the away-side of a triggered di-jet are likely to be the most modified by the partonic or early hadronic medium. We will discuss first results of triggered hadron-resonance correlations in Cu+Cu heavy ion collisions.Comment: Hot Quarks Colorado 2008 Proceedings, 4 pages 5 figure

    Strangeness and threshold of phase changes

    Full text link
    We explore entropy and strangeness as signature of QGP for top AGS energy and the energy scan at SPS. We find that the hadronization dynamics changes between 20 and 30 AA GeV projectile energy. The high energy results are consistent with QGP.Comment: Presented at SQM07, to appear in JPG special issu
    corecore