12 research outputs found
Therapeutic effects of co-inhaled roflumilast or formoterol and fluticasone on asthma-induced ultrastructural changes in murine airways
Purpose: To investigate the therapeutic effects of "inhaled" roflumilast and formoterol separately or combined with fluticasone on the ultrastructural airway changes in ovalbumin-induced asthmatic mice.Methods: The asthmatic mice were divided randomly into seven groups (n = 8): positive control, vehicle, and five treated groups. The following treatments were given by inhalation (15 min once/day) for seven days: roflumilast (500 Ī¼g/kg), formoterol (50 Ī¼g/kg), fluticasone (1000 Ī¼g/kg), roflumilast + fluticasone (500 + 1000 Ī¼g/kg), and formoterol + fluticasone (50 + 1000 Ī¼g/kg). Ultrathin lung sections (50 - 70 nm thick) were examined by transmission electron microscopy.Results: The asthmatic mice showed marked degenerative changes in bronchiolar epithelial cells. The alveolar septal walls were thickened with cellular changes and capillary congestion. The basement membranes showed marked thickening and the airway lumens contained abundant mucinous secretions. These ovalbumin-induced ultrastructural airway changes were markedly-reversed in the roflumilast + fluticasone group, moderately-reversed in the roflumilast, fluticasone, and formoterol + fluticasone groups, but were not affected in the formoterol group.Conclusion: Co-inhalation of roflumilast + fluticasone significantly improved the ultrastructural airway changes than co-inhalation of formoterol + fluticasone in ovalbumin-asthmatic mice due to its antiinflammatory and antifibrotic effects.Keywords: Asthma, Fluticasone Propionate, Formoterol, Roflumilast, Ovalbumin, Remodeling, Bronchiolar epitheliu
Target-based virtual screening and molecular dynamics approach to identify potential antileishmanial agents through targeting UvrD-like helicase ATP-binding domain
Background:Ā About 0.7-1.0 million people worldwide have been suffering from Leishmaniasis. It falls under a neglected tropical disease (NTD) and is transmitted by biting infected female phlebotomine sandflies. The implication of āthe NTD road map: together towards 2030ā in the infection-prone regions worldwide has curtailed morbidity to a greater extent. However, limited options in antileishmanial oral and topical drugs must decipher more therapeutically efficacious agents to cure and eradicate the disease.Ā Methods: Virtual screening based on structure, docking, & molecular dynamics approaches were adopted to identify potential lead molecules against UvrD-like helicase ofĀ Leishmania donovaniĀ from the MCULE database. Lipinski rule of five, N/O atoms (1-15), number of rings (1-2), HBDs (4-5), and HBAs (5-10) were applied as initial filters of SBVS. AutoDock Vina and GROMACS packages were used for docking and MD simulations, respectively.Ā Results:Ā Initial filters of SBVS workflow yielded 93885 ligand hits out of 100 plus million investigational ligands. Following the toxicology test, 28 ligands were gotten that were additional reduced to molecules (17) when accepted done the BOILED Egg model of the ADME. Six molecules were shortlisted with zero violation compliance of drug-likeness further than Lipinski RO5 viz., Egan, Veber, Muegge, Ghose, & bioavailability score having ĪG (-6.7 to -7.4 kcalmol-1) lesser than reference inhibitor miltefosine (-4.9 kcalmol-1). The stability of MCULE-5754880195-0-2 was found to be greater than the known inhibitor and ligand molecules mentioned above.Conclusion:Ā Ā MCULE-5754880195-0-2 has all therapeutic features by way of an admirable oral drug molecule & could be encouraging in Leishmaniasis prevention & treatment.Keywords:Ā UvrD-like helicase; ADME; Leishmaniasis; MCULE database; SBVS; Docking; BOILED Egg; MD simulation; ATP-binding domain
Case report: A novel de novo loss of function variant in the DNA-binding domain of TBX2 causes severe osteochondrodysplasia
Background: T-box family members are transcription factors characterized by highly conserved residues corresponding to the DNA-binding domain known as the T-box. TBX2 has been implicated in several developmental processes, such as coordinating cell fate, patterning, and morphogenesis of a wide range of tissues and organs, including lungs, limbs, heart, kidneys, craniofacial structures, and mammary glands.Methods: In the present study, we have clinically and genetically characterized a proband showing a severe form of chondrodysplasia with developmental delay. Whole-exome sequencing (WES), Sanger sequencing, and 3D protein modeling were performed in the present investigation.Results: Whole-exome sequencing revealed a novel nonsense variant (c.529A>T; p.Lys177*; NM_005994.4) in TBX2. 3D-TBX2 protein modeling revealed a substantial reduction of the mutated protein, which might lead to a loss of function (LOF) or nonsense-mediated decay (NMD).Conclusion: This study has not only expanded the mutation spectrum in the gene TBX2 but also facilitated the diagnosis and genetic counseling of related features in affected families
Targeting Kaposiās sarcoma associated herpesvirus encoded protease (ORF17) by a lysophosphatidic acid molecule for treating KSHV associated diseases
Kaposiās sarcoma associated herpesvirus (KSHV) is causative agent of Kaposiās sarcoma, Multicentric Castleman Disease and Pleural effusion lymphoma. KSHV-encoded ORF17 encodes a protease which cleaves -Ala-Ala-, -Ala-Ser- or -Ala-Thr-bonds. The protease plays an important role in assembly and maturation of new infective virions. In the present study, we investigated expression pattern of KSHV-encoded protease during physiologically allowed as well as chemically induced reactivation condition. The results showed a direct and proportionate relationship between ORF17 expression with reactivation time. We employed virtual screening on a large database of natural products to identify an inhibitor of ORF17 for its plausible targeting and restricting Kaposiās sarcoma associated herpesvirus assembly/maturation. A library of 307,814 compounds of biological origin (A total 481,799 structures) has been used as a screen library. 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1ā²-myo-inositol) was highly effective against ORF17 in in-vitro experiments. The screened compound was tested for the cytotoxic effect and potential for inhibiting Kaposiās sarcoma associated herpesvirus production upon induced reactivation by hypoxia, TPA and butyric acid. Treatment of reactivated KSHV-positive cells with 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1ā²-myo-inositol) resulted in significant reduction in the production of Kaposiās sarcoma associated herpesvirus. The study identified a lysophosphatidic acid molecule for alternate strategy to inhibit KSHV-encoded protease and target Kaposiās sarcoma associated herpesvirus associated malignancies
Biallelic Variants in Seven Different Genes Associated with Clinically Suspected Bardet-Biedl Syndrome
Bardet-Biedl syndrome (BBS) is a rare clinically and genetically heterogeneous autosomal recessive multi-systemic disorder with 22 known genes. The primary clinical and diagnostic features include six different hallmarks, such as rod-cone dystrophy, learning difficulties, renal abnormalities, male hypogonadism, post-axial polydactyly, and obesity. Here, we report nine consanguineous families and a non-consanguineous family with several affected individuals presenting typical clinical features of BBS. In the present study, 10 BBS Pakistani families were subjected to whole exome sequencing (WES), which revealed novel/recurrent gene variants, including a homozygous nonsense mutation (c.94C>T; p.Gln32Ter) in the IFT27 (NM_006860.5) gene in family A, a homozygous nonsense mutation (c.160A>T; p.Lys54Ter) in the BBIP1 (NM_001195306.1) gene in family B, a homozygous nonsense variant (c.720C>A; p.Cys240Ter) in the WDPCP (NM_015910.7) in family C, a homozygous nonsense variant (c.505A>T; p.Lys169Ter) in the LZTFL1 (NM_020347.4) in family D, pathogenic homozygous 1 bp deletion (c.775delA; p.Thr259Leufs*21) in the MKKS/BBS5 (NM_170784.3) gene in family E, a pathogenic homozygous missense variant (c.1339G>A; p.Ala447Thr) in BBS1 (NM_024649.4) in families F and G, a pathogenic homozygous donor splice site variant (c.951+1G>A; p?) in BBS1 (NM_024649.4) in family H, a pathogenic bi-allelic nonsense variant in MKKS (NM_170784.3) (c.119C>G; p.Ser40*) in family I, and homozygous pathogenic frameshift variants (c.196delA; p.Arg66Glufs*12) in BBS5 (NM_152384.3) in family J. Our findings extend the mutation and phenotypic spectrum of four different types of ciliopathies causing BBS and also support the importance of these genes in the development of multi-systemic human genetic disorders
Cystic fibrosis: current therapeutic targets and future approaches
Abstract Objectives Study of currently approved drugs and exploration of future clinical development pipeline therapeutics for cystic fibrosis, and possible limitations in their use. Methods Extensive literature search using individual and a combination of key words related to cystic fibrosis therapeutics. Key findings Cystic fibrosis is an autosomal recessive disorder due to mutations in CFTR gene leading to abnormality of chloride channels in mucus and sweat producing cells. Respiratory system and GIT are primarily involved but eventually multiple organs are affected leading to life threatening complications. Management requires drug therapy, extensive physiotherapy and nutritional support. Previously, the focus was on symptomatic improvement and complication prevention but recently the protein rectifiers are being studied which are claimed to correct underlying structural and functional abnormalities. Some improvement is observed by the corrector drugs. Other promising approaches are gene therapy, targeting of cellular interactomes, and newer drugs for symptomatic improvement. Conclusions The treatment has a long way to go as most of the existing therapeutics is for older children. Other limiting factors include mutation class, genetic profile, drug interactions, adverse effects, and cost. Novel approaches like gene transfer/gene editing, disease modeling and search for alternative targets are warranted
Unrevealing the multitargeted potency of 3-1-BCMIYPPA against lung cancer structural maintenance and suppression proteins through pharmacokinetics, QM-DFT, and multiscale MD simulation studies.
Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Ć
with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested
Oleuropein as a Potent Compound against Neurological Complications Linked with COVID-19: A Computational Biology Approach
The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to Ī±-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as ā7.8, ā8.3, and ā8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes
Anti-Tumor Potential of <i>Gymnema sylvestre</i> Saponin Rich Fraction on In Vitro Breast Cancer Cell Lines and In Vivo Tumor-Bearing Mouse Models
Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Daltonās lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy
Case Report: Biallelic Variant in the tRNA Methyltransferase Domain of the AlkB Homolog 8 Causes Syndromic Intellectual Disability
Intellectual disability (ID) has become very common and is an extremely heterogeneous disorder, where the patients face many challenges with deficits in intellectual functioning and adaptive behaviors. A single affected family revealed severe disease phenotypes such as ID, developmental delay, dysmorphic facial features, postaxial polydactyly type B, and speech impairment. DNA of a single affected individual was directly subjected to whole exome sequencing (WES), followed by Sanger sequencing. Data analysis revealed a novel biallelic missense variant (c.1511G>C; p.(Trp504Ser)) in the ALKBH8 gene, which plays a significant role in tRNA modifications. Our finding adds another variant to the growing list of ALKBH8-associated tRNA modifications causing ID and additional phenotypic manifestations. The present study depicts the key role of the genes associated with tRNA modifications, such as ALKBH8, in the development and pathophysiology of the human brain