7 research outputs found

    Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption

    No full text
    Tumor cells rely on high concentrations of amino acids to support their growth and proliferation. Although increased macropinocytic uptake and lysosomal degradation of the most abundant serum protein, albumin, in Ras-transformed cells can meet these demands, it is not understood how the majority of tumor cells that express wild type Ras achieve this. In the current study we reveal that the neonatal Fc receptor, FcRn, regulates tumor cell proliferation through the ability to recycle its ligand, albumin. By contrast with normal epithelial cells, we show that human FcRn is present at very low or undetectable levels in the majority of tumor cell lines analyzed. Remarkably, shRNA-mediated ablation of FcRn expression in an FcRn-positive tumor cell line results in a substantial growth increase of tumor xenografts, whereas enforced expression of this receptor by lentiviral transduction has the reverse effect. Moreover, intracellular albumin and glutamate levels are increased by the loss of FcRn-mediated recycling of albumin, combined with hypoalbuminemia in tumor-bearing mice. These studies identify a novel role for FcRn as a suppressor of tumor growth and have implications for the use of this receptor as a prognostic indicator and therapeutic target.</p

    The encephalitogenic, human myelin oligodendrocyte glycoprotein-induced antibody repertoire is directed toward multiple epitopes in C57BL/6-immunized mice

    No full text
    Although Abs specific for myelin oligodendrocyte glycoprotein (MOG) have been detected in patients with multiple sclerosis (MS), their contribution to pathogenesis remains poorly understood. Immunization of C57BL/6 mice with recombinant human MOG (hMOG) results in experimental autoimmune encephalomyelitis involving MOG-specific, demyelinating Abs. This model is therefore informative for understanding anti-MOG humoral responses in MS. In the current study, we have characterized the hMOGspecific Ab repertoire in immunized C57BL/6 mice using both in vitro and in vivo approaches.We demonstrate that hMOG-specific mAbs are not focused on one specific region of MOG, but instead target multiple epitopes. Encephalitogenicity of the mAbs, assessed by the ability of the mAbs to exacerbate experimental autoimmune encephalomyelitis in mice, correlates with the activity of the mAbs in binding to CNS tissue sections, but not with other in vitro assays. The targeting of different MOG epitopes by encephalitogenic Abs has implications for disease pathogenesis, because it could result in MOG cross linking on oligodendrocytes and/or immune complex formation. These studies reveal several novel features concerning pathogenic, humoral responses that may have relevance to human MS.</p

    Selective depletion of radiolabeled HER2-specific antibody for contrast improvement during PET

    No full text
    The prolonged in vivo persistence of antibodies results in high background and poor contrast during their use as molecular imaging agents for positron emission tomography (PET). We have recently described a class of engineered Fc fusion proteins that selectively deplete antigen-specific antibodies without affecting the levels of antibodies of other specificities. Here, we demonstrate that these Fc fusions (called Seldegs, for selective degradation) can be used to clear circulating, radiolabeled HER2-specific antibody during diagnostic imaging of HER2-positive tumors in mice. The analyses show that Seldegs have considerable promise for the reduction of whole-body exposure to radiolabel and improvement of contrast during PET.</p

    Use of Fc-engineered antibodies as clearing agents to increase contrast during PET

    No full text
    Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. Methods: Mice bearing human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. Results: The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. Conclusion: Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET. COPYRIGHT</p
    corecore