11 research outputs found

    Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Full text link
    ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF), solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA). The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1) were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability

    Plantas de cobertura e qualidade química de latossolo Amarelo sob plantio direto no cerrado Maranhense

    No full text
    Aiming to evaluate the effect of cover plants over soil chemical attributes in the region of Balsas - Maranhão, samples of Oxisol under plant cover of millet [Pennisetum americanum (L.) Leeke], brachiaria (Brachiaria ruziziensis) and native Cerrado (mid-sized), were collected in three depths (0-0.10; 0.10-0.20 and 0.20-0.40 m). Plant cover of millet and brachiaria promoted an increase in soil pH and reductions in amounts of Al3+ and in saturation by Al3+, in relation to the area with native Cerrado. Major amounts of residue were verified on soil surface under native cerrado, due to greater input of plant residue and lower decomposition rate. Amounts of nutrients and levels of organic matter were higher in areas under millet and brachiaria cover, mainly in 0-0.10 e 0.10-0.20 m. depths. Brachiaria and millet cover plants were similar in relation to alterations promoted in chemical attributes of soil

    Growth of Leucaena leucocephala (Lam.) de Wit favored by organic waste in the Brazilian semiarid region

    No full text
    ABSTRACT The aim of this study was to evaluate the effect of sources and rates of organic waste and their interaction on the growth of Leucaena leucocephala (Lam.) de Wit, in the Southeast region of Piauí State. The treatments consisted of two sources (Copernicia prunifera (Mill.) H.E. palm residue and plant compound) and six organic waste rates. The study was conducted in the period of March-June 2011 and the following parameters were evaluated: stem diameter, height, number of leaves, shoot dry weight, root dry weight, total dry matter, root volume, shoot dry weight/root dry weight ratio, height/stem diameter ratio and the Dickson Quality Index. The Copernicia prunifera (Mill.) H.E. palm residue and plant compound showed a great potential to be used in the manufacture of substrates for the production of seedlings Leucaena leucocephala (Lam.) de Wit, since their initial development was influenced by the sources and proportions of these organic residues and by the interaction between these treatments. The substrate containing 50% of plant compound produced better quality of plants of Leucaena leucocephala (Lam.) de Wit in their initial development stage

    Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    No full text
    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.<br>Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos), e genotípica (seqüenciamento de 16S rDNA), comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades encontradas em amostras de solo e raiz de sítios contaminados foram semelhantes àquelas relatadas na literatura para solos agrícolas. Isolados de Azospirillum spp. de solos contaminados e estirpes tipo oriundas de solos não contaminados variaram substancialmente com relação à tolerância a Zn+2 e Cd+2, sendo que Cd+2 mais tóxico que Zn+2. Dentre os isolados mais tolerantes (UFLA 1S, 1R, S181, S34, e S22), alguns(1R, S34 e S22) foram mais tolerantes a metais pesados que rizóbios isolados de solos de áreas tropicais e temperadas. A maioria dos isolados mais tolerantes a metais pesados também foi tolerante ao estresse salino, o que foi indicado por seu crescimento em meio sólido suplementado com 30 g L-1 de NaCl in vitro. Cinco isolados apresentaram alta dissimilaridade em perfis protéicos e o seqüenciamento do gene 16S rDNA em dois deles revelou que apresentam novas seqüências de Azospirillum
    corecore