5 research outputs found

    Organization of Bacteriochlorophylls in Individual Chlorosomes from Chlorobaculum tepidum Studied by 2-Dimensional Polarization Fluorescence Microscopy

    No full text
    Chlorosomes are the largest and most efficient natural light-harvesting systems and contain supramolecular assemblies of bacteriochlorophylls that are organized without proteins. Despite a recent structure determination for chlorosomes from Chlorobaculum tepidum (Ganapathy Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525), the issue of a possible large structural disorder is still discussed controversially. We have studied individual chlorosomes prepared under very carefully controlled growth condition by a novel 2-dimensional polarization single molecule imaging technique giving polarization information for both fluorescence excitation and emission simultaneously. Contrary to the existing literature data, the polarization degree or modulation depth (<i>M</i>) for both excitation (absorption) and emission (fluorescence) showed extremely narrow distributions. The fluorescence was always highly polarized with <i>M</i> ≈ 0.77, independent of the excitation wavelength. Moreover, the fluorescence spectra of individual chlorosomes were identical within the error limits. These results lead us to conclude that all chlorosomes possess the same type of internal organization in terms of the arrangement of the bacteriochlorophyll c transition dipole moments and their total excitonic transition dipole possess a cylindrical symmetry in agreement with the previously suggested concentric multitubular chlorophyll aggregate organization (Ganapathy Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525<i>)</i>

    Single Lévy States–Disorder Induced Energy Funnels in Molecular Aggregates

    No full text
    Using fluorescence super-resolution microscopy we studied simultaneous spectral, spatial localization, and blinking behavior of individual 1D J-aggregates. Excitons migrating 100 nm are funneled to a trap appearing as an additional red-shifted blinking fluorescence band. We propose that the trap is a Frenkel exciton state formed much below the main exciton band edge due to an environmentally induced heavy-tailed Lévy disorder. This points to disorder engineering as a new avenue in controlling light-harvesting in molecular ensemble

    Polarization Imaging of Emissive Charge Transfer States in Polymer/Fullerene Blends

    No full text
    Photoexcitation of conjugated polymer–fullerene blends results in population of a local charge transfer (CT) state at the interface between the two materials. The competition between recombination and dissociation of this interfacial state limits the generation of fully separated free charges. Therefore, a detailed understanding of the CT states is critical for building a comprehensive picture of the organic solar cells operation. We applied a new fluorescence microscopy method called two-dimensional polarization imaging to gain insight into the orientation of the transition dipole moments of the CT states, and the associated excitation energy transfer processes in TQ1:PCBM blend films. The polymer phase was oriented mechanically to relate the polymer dipole moment orientation to that of the CT states. CT state formation was observed to be much faster than energy transfer in the polymer phase. However, after being formed an emissive CT state does not exchange excitation energy with other CT states, suggesting that they are spatially and/or energetically isolated. We found that the quantum yield of the CT emission is smaller for CT states spatially located in the highly oriented polymer domains, which is interpreted as the result of enhanced CT state dissociation in highly ordered structures

    ივერია N184

    No full text
    საპოლიტიკო და სალიტერატურო გაზეთ
    corecore