32 research outputs found

    The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata)

    Get PDF
    According to the results presented in this paper the fungal endophyteEpichloë typhinasignificantly improves the growth, PSII photochemistry and C assimilation efficiency of its hostDactylis glomerata. In this paper, we present a comprehensive study of the impact of the endophytic fungi Epichloë typhina on its plant hosts’ photosynthesis apparatus. Chlorophyll a fluorescence, gas exchange, immuno-blotting and spectrophotometric measurements were employed to assess photosynthetic performance, changes in pigment content and mechanisms associated with light harvesting, carbon assimilation and energy distribution in Dactylis glomerata colonized with Epichloë typhina. According to the results presented in this study, colonization of D. glomerata results in improved photosynthesis efficiency. Additionally, we propose a new mechanism allowing plants to cope with the withdrawal of a significant fraction of its energy resources by the endophytic fungi. The abundance of LHCI, LHCII proteins as well as chlorophyll b was significantly higher in E+ plants. Malate export out of the chloroplast was shown to be increased in colonized plants. To our knowledge, we are the first to report this phenomenon. Epichloë colonization improved PSII photochemistry and C assimilation efficiency. Elevated energy demands of E+ D. glomerata plants are met by increasing the rate of carbon assimilation and PSII photochemistry. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-015-2337-x) contains supplementary material, which is available to authorized users

    The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp.

    Get PDF
    Over the last years the role of fungal endophytes in plant biology has been extensively studied. A number of species were shown to positively affect plant growth and fitness, thus attempts have been made to utilize these microorganisms in agriculture and phytoremediation. Plant-fungi symbiosis requires multiple metabolic adjustments of both of the interacting organisms. The mechanisms of these adaptations are mostly unknown, however, plant hormones seem to play a central role in this process. The plant hormone strigolactone (SL) was previously shown to activate hyphae branching of mycorrhizal fungi and to negatively affect pathogenic fungi growth. Its role in the plant–endophytic fungi interaction is unknown. The effect of the synthetic SL analog GR24 on the endophytic fungi Mucor sp. growth, respiration, H2O2 production and the activity of antioxidant enzymes was evaluated. We found fungi colony growth rate was decreased in a GR24 concentration dependent manner. Additionally, the fungi accumulated more H2O2 what was accompanied by an altered activity of antioxidant enzymes. Symbiosis with Mucor sp. positively affected Arabidopsis thaliana growth, but SL was necessary for the establishment of the beneficial interaction. A. thaliana biosynthesis mutants max1 and max4, but not the SL signaling mutant max2 did not develop the beneficial phenotype. The negative growth response was correlated with alterations in SA homeostasis and a significant upregulation of genes encoding selected plant defensins. The fungi were also shown to be able to decompose SL in planta and to downregulate the expression of SL biosynthesis genes. Additionally, we have shown that GR24 treatment with a dose of 1 μM activates the production of SA in A. thaliana. The results presented here provide evidence for a role of SL in the plant–endophyte cross-talk during the mutualistic interaction between Arabidopsis thaliana and Mucor sp

    Iron inactivation by Sporobolomyces ruberrimus and its potential role in plant metal stress protection : an in vitro study

    Get PDF
    The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules

    Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops

    Get PDF
    International audience& Context The requirement for rebuilding forecrop stands besides replacement of meadow vegetation with forest plants and formation of soil humus is the presence of a compatible ectomycorrhizal (ECM) fungal community. & Aims This study aims to assess ectomycorrhizal fungi di-versity associated with silver fir (Abies alba Mill.) seedlings regenerating in silver fir stands and Scots pine forecrops. & Methods One-year-old seedlings were sampled in six study sites: three mature fir forests and three pine forests. ECM fungi were identified by polymerase chain reaction amplifica-tion and sequencing of the internal transcribed spacer of rDNA. & Results The mean mycorrhizal colonization exceeded 90 %. Thirty-six ectomycorrhizal taxa were identified in fir stands and 23 in pine forecrops; ten out of these species were com-mon to both stands. The fungal communities were different between study sites (R = 0.1721, p = 0.0001). Tomentella stuposa was the only species present at all sites. & Conclusion Silver fir seedlings in Scots pine forecrops supported smaller ECM fungal communities than communi-ties identified in mature silver fir stands. Nevertheless, fungal colonization of seedling roots was similar in both cases. This suggests that pine stands afforested on formerly arable land bear enough ECM species to allow survival and growth of silver fir seedlings
    corecore