18 research outputs found

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions.

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Serotype Distribution and Antimicrobial Resistance of Shigella Species in Bangui, Central African Republic, from 2002 to 2013

    No full text
    International audienceShigella is a major cause of severe diarrhea in children less than the age of 5 years in sub-Saharan Africa. The aim of this study was to describe the (sub-)serotype distribution and antimicrobial susceptibility of Shigella serogroups from Centrafrican patients with diarrhea between 2002 and 2013. We collected 443 Shigella isolates in total. The most common serogroups were Shigella flexneri (N = 243, 54.9%), followed by Shigella sonnei (N = 90, 20.3%) and Shigella dysenteriae (N = 72, 16.3%). The high diversity of (sub-)serotypes of S. flexneri and S. dysenteriae may impede the development of an efficient vaccine. Rates of resistance were high for ampicillin, chloramphenicol, tetracycline, and cotrimoxazole but low for many other antimicrobials, confirming recommendations for the use of third-generation cephalosporins (only one organism resistant) and fluoroquinolones (no resistance). However, the detection of one extended-spectrum beta-lactamase-producing Shigella organism highlights the need for continued monitoring of antimicrobial drug susceptibility

    First case of Elizabethkingia anophelis meningitis in the Central African Republic.

    No full text
    International audienceAn 8-day-old girl of indigenous origin delivered by caesarean section to an HIV-negative mother with an uneventful pregnancy presented to the Complexe Pédiatrique in Bangui, Central African Republic, in March 2011 with a 3-day history of fever at 38.5 °C. The newborn had a history of intubation and mechanical ventilation at birth due to asphyxia, followed by 2 days of hospitalization. At admission, she was irritable, feeding poorly, had a seizure and had lost 1500 g (32%) of her birth weight. She showed ..

    Etiology and Epidemiology of Diarrhea in Hospitalized Children from Low Income Country: A Matched Case-Control Study in Central African Republic

    Get PDF
    International audienceBackground: In Sub-Saharan Africa, infectious diarrhea is a major cause of morbidity and mortality. A case-control study was conducted to identify the etiology of diarrhea and to describe its main epidemiologic risk factors among hospitalized children under five years old in Bangui, Central African Republic.Methods: All consecutive children under five years old hospitalized for diarrhea in the Pediatric Complex of Bangui for whom a parent’s written consent was provided were included. Controls matched by age, sex and neighborhood of residence of each case were included. For both cases and controls, demographic, socio-economic and anthropometric data were recorded. Stool samples were collected to identify enteropathogens at enrollment. Clinical examination data and blood samples were collected only for cases.Results: A total of 333 cases and 333 controls was recruited between December 2011 and November 2013. The mean age of cases was 12.9 months, and 56% were male. The mean delay between the onset of first symptoms and hospital admission was 3.7 days. Blood was detected in 5% of stool samples from cases. Cases were significantly more severely or moderately malnourished than controls. One of the sought-for pathogens was identified in 78% and 40% of cases and controls, respectively. Most attributable cases of hospitalized diarrhea were due to rotavirus, with an attributable fraction of 39%. Four other pathogens were associated with hospitalized diarrhea: Shigella/EIEC, Cryptosporidium parvum/hominis, astrovirus and norovirus with attributable fraction of 9%, 10%, 7% and 7% respectively. Giardia intestinalis was found in more controls than cases, with a protective fraction of 6%.Conclusions: Rotavirus, norovirus, astrovirus, Shigella/EIEC, Cryptosporidium parvum/hominis were found to be positively associated with severe diarrhea: while Giardia intestinalis was found negatively associated. Most attributable episodes of severe diarrhea were associated with rotavirus, highlighting the urgent need to introduce the rotavirus vaccine within the CAR’s Expanded Program on Immunization. The development of new medicines, vaccines and rapid diagnostic tests that can be conducted at the bedside should be high priority for low-resource countries

    Pathogen load in different age categories.

    No full text
    <p><b>A:</b> Pathogen load by age category for the three main groups of pathogens, parasites (white bars), bacteria (grey bars) and viruses (black bars). <b>B</b>: Infection with multiple pathogens by age category. White bars indicate the presence of at least one pathogen of any group (parasite, bacteria or virus), grey bars the presence of at least two pathogens of any group (parasite, bacteria or virus) and black bars indicate mixed infections with at least one representative of two different groups (virus, parasite or bacteria) in the same child. Infant: 0–11 months, Toddler: 12–23 months; Child: ≥ 24 months).</p
    corecore