313 research outputs found

    Vanishing Cosmological Constant in Modified Gauss-Bonnet Gravity with Conformal Anomaly

    Get PDF
    We consider dark energy cosmology in a de Sitter universe filled with quantum conformal matter. Our model represents a Gauss-Bonnet model of gravity with contributions from quantum effects. To the General Relativity action an arbitrary function of the GB invariant, f(G), is added, and taking into account quantum effects from matter the cosmological constant is studied. For the considered model the conditions for a vanishing cosmological constant are considered. Creation of a de Sitter universe by quantum effects in a GB modified gravity is discussed.Comment: 8 pages latex, 1 figure. To appear in Int. J. Mod. Phys.

    What is needed of a tachyon if it is to be the dark energy?

    Full text link
    We study a dark energy scenario in the presence of a tachyon field ϕ\phi with potential V(ϕ)V(\phi) and a barotropic perfect fluid. The cosmological dynamics crucially depends on the asymptotic behavior of the quantity λ=MpVϕ/V3/2\lambda=-M_pV_\phi/V^{3/2}. If λ\lambda is a constant, which corresponds to an inverse square potential V(ϕ)ϕ2V(\phi) \propto \phi^{-2}, there exists one stable critical point that gives an acceleration of the universe at late times. When λ0\lambda \to 0 asymptotically, we can have a viable dark energy scenario in which the system approaches an ``instantaneous'' critical point that dynamically changes with λ\lambda. If λ|\lambda| approaches infinity asymptotically, the universe does not exhibit an acceleration at late times. In this case, however, we find an interesting possibility that a transient acceleration occurs in a regime where λ|\lambda| is smaller than of order unity.Comment: 11 pages and 3 figures, minor clarifications added; final version to appear in PR

    Superconformal Quantum Mechanics of Small Black Holes

    Full text link
    Recently, Gaiotto, Strominger and Yin have proposed a holographic dual description for the near-horizon physics of certain N=2 black holes in terms of the superconformal quantum mechanics on D0-branes in the attractor geometry. We provide further evidence for their proposal by applying it to the case of `small' black holes which have vanishing horizon area in the leading supergravity approximation. We consider 2-charge black holes in type IIA on T2×MT^2 \times M, where MM can be either K3K_3 or T4T^4, made up out of D0-branes and D4-branes wrapping MM. We construct the corresponding superconformal quantum mechanics and show that the asymptotic growth of chiral primaries exactly matches with the known entropy of these black holes. The state-counting problem reduces to counting lowest Landau levels on T2T^2 and Dolbeault cohomology classes on MM.Comment: Latex, 16 pages; v2: minor corrections, references added, published versio

    Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations

    Get PDF
    Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the network is needed. We argue that the mutual information (MI) between a given subset of the inputs X = {X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies the determinative power of this set of inputs over node i. We compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that, maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct relation between MI and sensitivity to perturbations. As an application of our results, we analyze the large-scale regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be tolerant to perturbations of its inputs

    Non-minimally Coupled Tachyonic Inflation in Warped String Background

    Full text link
    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large TT along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured.Comment: minor typos corrected and references adde
    corecore