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I. INTRODUCTION

This paper deals with higher spin Dirac operators (or HSD operators for short). These

are elliptic first order differential operators, generalising the classical (massless) Dirac op-

erator known from particle physics9. HSD operators act on functions f(x), defined on Rm,

which take values in arbitrary irreducible finite-dimensional half-integer highest weight rep-

resentations for the spin group, or equivalently, for its Lie algebra so(m). We study these

operators in the setting of Clifford analysis, as this framework allows us to construct such

representations as well-described function spaces, making it possible to make use of explicit

computations in several vector variables. This is a function theory which, on the one hand

generalises classical complex analysis, while on the other hand, it is a refinement of harmonic

analysis on Rm2,8,12.

The first generalisations of the Dirac operator are the Rarita-Schwinger operators3,4,

another class of operators originating in particle physics16. These operators were further

generalised in the more recent papers6,7,10. As for any function theory, the understanding of

the kernel space for these operators is crucial, in particular the polynomial kernel spaces, as

it is dense in the space of continuous functions. The aim of the present paper is to study

the vector space of polynomial solutions for arbitrary higher spin Dirac operators as a spin

group module. A first attempt was made in11, where the problem at hand was converted to

a combinatorial problem. The main drawback of the approach in the article was that the

procedure only worked if the degree of homogeneity of the polynomial solutions was large

enough and the fact that the combinatorial problem at hand remained an open problem. In

this paper, we describe a different approach, which works for all cases and fully solves the

proposed problem. The main problem lies in the fact that HSD operators stand in sharp

contrast to the classical Dirac operator. Whereas the space of polynomial solutions for the

latter is multiplicity free, the solution spaces for the HSD operators are highly reducible and

not multiplicity free.

The structure of this paper is as follows. We will introduce basic definitions and concepts

of Clifford analysis in Section 2, which will allow us to define higher spin Dirac operators.

In Section 3, we will introduce some results from the representation theory of classical Lie

groups, more specifically about the decompositions of tensor products. Finally, in Section

4, we use these results determine the full decomposition of the polynomial kernels of higher
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spin Dirac operators.

II. NOTATIONS AND DEFINITIONS

The real universal Clifford algebra Rm is defined as an algebra over the m-dimensional

real space Rm with standard orthonormal basis {e1, . . . , em}, governed by the multiplication

relations eiej + ejei = −2δij. The complex Clifford algebra Cm is the complexification of the

real Clifford algebra Cm = Rm ⊗C. Within Rm, the spin group can be defined as the set of

even products of unit vectors:

Spin(m) :=

{
2p∏
j=1

ωj : ωj ∈ Sm−1
}
,

where Sm−1 is the unit sphere in Rm. The Lie algebra of the spin group is the (real)

orthogonal algebra so(m). One can realise the space of Dirac spinors S as a minimal left

ideal in Cm, but more importantly, S defines a model for a representation of the spin group.

In case of an odd dimension m = 2n+1, it is the irreducible basic half-integer representation

with highest weight
(
1
2
, . . . , 1

2

)
, which has n entries. In case of an even dimension m = 2n,

the spinor space is reducible as spin-representation, S = S+ ⊕ S− where the summands are

irreducible representations for Spin(m) with highest weights
(
1
2
, . . . , 1

2

)
and

(
1
2
, . . . , 1

2
,−1

2

)
.

For this reason, we will restrict ourselves to odd dimensions throughout this article.

In general all irreducible representations of the spin group can be characterised by their

highest weight, containing coordinates λ = (l1, . . . , ln) with respect to the standard basis

{Lj, 1 ≤ j ≤ n} for the dual space h∗. Here, h denotes a Cartan algebra for the Lie algebra

so(m).

At the heart of classical Clifford analysis lies the (massless) Dirac operator. This is

a conformally invariant elliptic first order differential operator mapping functions taking

values in the spinor space S to the same space. This operator is given by ∂x =
∑m

j=1 ej∂xj .

It factorises the m-dimensional Laplace operator ∆x = −∂2x which is the reason why Clifford

analysis is often seen as a refinement of harmonic analysis. This implies that the space of

polynomial solutions for the Dirac operator is a subspace of the space of S-valued harmonic

polynomials. The space of polynomials of degree h in a vector variable x will be denoted

by Ph(Rm,C). When using variables uj ∈ Rm, the corresponding Euler operator, Laplace

operator and Dirac operator will be denoted by Ej,∆j and ∂j rather than Euj ,∆uj and ∂uj .
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The notation 〈·, ·〉 is reserved for the Euclidean inner product on Rm. As Dirac operators

are very similar to vectors, we extend the Euclidean inner product, e.g. 〈x, ∂y〉 =
∑m

j=1 xj∂yj

for any two vectors x = (x1, . . . , xm) and y = (y1, . . . , ym)

Within Clifford analysis, all finite dimensional irreducible representations of the spin

group can be modeled by polynomial spaces5,12. Therefore, let us introduce the following

definitions.

Definition II.1. A function f : Rkm → C : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called simplicial

harmonic if it satisfies the system

〈∂i, ∂j〉f = 0, for all i, j = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k.

The vector space Hλ = Hl1,...,lk is the space of C-valued simplicial harmonic polynomials,

homogeneous of degree li in ui (λ = (l1, . . . , lk)).

Definition II.2. A function f : Rkm → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called simplicial

monogenic if it satisfies the system

∂if = 0, for all i = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k.

The vector space Sλ = Sl1,...,lk is the space of S-valued simplicial monogenic polynomials,

homogeneous of degree li in ui (λ = (l1, . . . , lk)).

These polynomial spaces have the following properties (e.g.5).

Theorem II.3. Set λ = (l1, . . . , lk) where l1 ≥ l2 ≥ · · · ≥ lk.

• The polynomial space Hλ is a model for the irreducible Spin(m)-representation with

highest weight

(l1, . . . , lk, 0, . . . , 0).

As the zeros at the end do not matter for the representation, we will simply denote

this highest weight with λ.

• The polynomial space Sλ is a model for the irreducible Spin(m)-representation with

highest weight (
l1 +

1

2
, . . . , lk +

1

2
,
1

2
, . . . ,

1

2

)
We will denote a highest weight of this type by λ′.
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One can now consider smooth functions f(x;u1, . . . , uk) ∈ C∞(Rm,Sλ), taking values

in the irreducible spin module Sλ. This means that for any x ∈ Rm fixed, the resulting

polynomial in the dummy variables uj satisfies the requirements stated in Definition II.2.

On this type of functions, we can define conformally invariant differential operators which

are direct generalisations of the Dirac operator: higher spin Dirac operators.

Definition II.4. For an arbitrary half-integer highest weight λ′, the associated HSD oper-

ator Qλ is given by

Qλ :=
k∏
j=1

(
1 +

uj∂j
m+ 2Ej − 2j

)
∂x. (II.1)

Note that the product is understood to be ordered, with indices increasing from left to

right. The Euler operator in the variable uj acts as the constant lj, as the operator acts

on homogeneous polynomials. In the case where λ = l1, this operator corresponds to the

classical Rarita-Schwinger operator coming from physics16. When λ = (0), this operator is

the classical Dirac operator.

For the construction of this operator, we refer the reader to10.

As for any good function theory, we have to understand the polynomial kernel of such HSD

operators. This means that we have to decompose the kernel into irreducible representations

of the spin group. Contrary to the case of the classical Dirac operator however, we will see

that this kernel is highly reducible and not multiplicity free.

III. TENSOR PRODUCT DECOMPOSITIONS

In order to continue our reasoning, we need to know a bit more about tensor product

decompositions. We use the results found in1. In order to understand these results, we

have to introduce some notations. Remember that any irreducible Spin(m)-representation

is in 1-1 correspondence with its highest weight. Therefore, we will from now on denote

such representation by means of its highest weight. A general integer valued highest weight

λ = (l1, . . . , lk) can be seen as a partition of l = l1 + · · · + lk, with the condition that

l1 ≥ · · · ≥ lk. Each such partition λ specifies a regular Young diagram F λ consisting of l

boxes arranged in k left-adjusted rows. The length of the j-th row is lj for all j = 1, . . . , k.
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For instance, the Young diagram for (5, 3, 2, 2) is given by

F (5,3,2,2) = .

Take two partitions λ = (λ1, . . . , λa) and µ = (µ1, . . . , µb). Then one defines a product on

such partitions corresponding to the product of Schur functions sλ · sµ15, which is governed

by the Littlewood-Richardson rule15 as follows:

λ · µ =
∑
ν

mν
λµ ν

where the coefficients mν
λµ are the number of distinctly labeled Young diagrams F ν obtained

from F λ by the addition of the boxes of F µ in accordance with the following procedure: µ1

letters a, µ2 letters b, µ3 letters c, . . . are added alphabetically to F λ, one letter at a time

in such way that at every stage

(i) if the added letters are interpreted as boxes the resulting Young diagram is regular

(each row at least as long as the next one),

(ii) no two identical letters appear in the same column,

(iii) the sequence of added letters read from right to left across each row in turn from top

to bottom is a lattice permutation, in the sense that in this sequence the number of

letters a ≥ then the number of letters b ≥ the number of letters c ≥ · · · at every stage

of the sequence.

Example III.1. Let us give an example of this rule, where the product of partitions λ and

µ is identified with the product of the corresponding Young diagrams F λ and F µ:

F (2,1) · F (2,1) = · a a
b

= a a
b

+
a a

b
+

a
a

b
+

a

a
b

+ a
a
b

+
a

b
a

+ a
a b

+ a
a b

= F (4,2) + F (4,1,1) + 2F (3,2,1) + F (3,1,1,1)

+ F (2,2,1,1) + F (2,2,2) + F (3,3).
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Another action we can perform on two partitions is the division, corresponding to the skew

Schur functions15:

ν/µ =
∑
λ

mν
λµ λ.

The coefficients that appear are the Littlewood-Richardson coefficients we have introduced

above. ν/µ is the sum of those λ whose product with µ yields ν.

Let us now define Q =
∑∞

p=0(1
p), the sum of all partitions where the Young diagram is a

single column of length p. This is a so-called infinite S-function series1,13, and manipulations

such as the product or the division of a partition by such a series are well defined.

With these definitions, we can formulate the following theorem.

Theorem III.2 (1). The tensor product of two Spin(m)-representations with integer valued

highest weights λ and µ is given by

λ⊗ µ =
∑
ζ

(λ/ζ) · (µ/ζ).

The tensor product of two Spin(m)-representations where one has an integer valued highest

weight λ and the other has a half integer highest weight µ′ is given by

λ⊗ µ′ =
∑
ζ

((λ/(ζ ·Q)) · (µ/ζ))′. (III.1)

IV. KERNEL DECOMPOSITION

The aim of this section is to arrive at an algorithm which tells us how to decompose

the kernel of the higher spin Dirac operators into irreducible summands under the (regular)

action of the spin group in an alternative way. We will make use of a higher spin version of

the Cauchy-Kowalewskaya extension which was proven in11.

Theorem IV.1. As vector spaces, we have the isomorphism

Kh,λ := Ph(Rm,Sλ) ∩ kerQλ ∼= Pk(Rm−1,Sλ),

for any higher spin Dirac operator Qλ corresponding to an arbitrary highest weight λ

of a half-integer irreducible representation of finite dimension. This means that each h-

homogeneous polynomial in the kernel of Qλ corresponds to an h-homogeneous Sλ-valued

polynomial in m− 1 variables, and vice versa.
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We can then make use of the classical Fischer decomposition for harmonic polynomials

to obtain the direct sum formula

Ph(Rm−1,Sλ) ∼= Ph(Rm−1,C)⊗ Sλ ∼=

bh2c⊕
j=0

Hh−2j(Rm−1,C)

⊗ Sλ.
On the other hand, we also have the classical branching rules for harmonic polynomials:

Hh(Rm,Sλ) ∼=

(
h⊕
j=0

Hj(Rm−1,C)

)
⊗ Sλ.

Combining both formulae, we arrive at the following result, which is a formal identity, to

be understood on the level of isomorphisms. Note that we have omitted the space of values

Sλ, to shorten the notations:
h = 2κ Ph(Rm−1) ∼=

κ⊕
j=0

Hh−2j(Rm)\
κ−1⊕
j=0

Hh−(2j+1)(Rm)

h = 2κ+ 1 Ph(Rm−1) ∼=
κ⊕
j=0

Hh−2j(Rm)\
κ⊕
j=0

Hh−(2j+1)(Rm).

Denoting irreducible Spin(m)-representations by their highest weight, it follows that the

decomposition of a (homogeneous) HSD kernel space can be computed as follows:
h = 2κ Kh,λ ∼=

κ⊕
j=0

(h− 2j)⊗ λ′ −
κ−1⊕
j=0

(h− 2j − 1)⊗ λ′

h = 2κ+ 1 Kh,λ ∼=
κ⊕
j=0

(h− 2j)⊗ λ′ −
κ⊕
j=0

(h− 2j − 1)⊗ λ′.
(IV.1)

Here, the minus sign should be understood on the level of characters of irreducible repre-

sentations, in which only the weights play a role.After subtraction of the characters in the

right hand side of (IV.1), what remains is the character of the left hand side, and this can

again be identified with the representation space.

Let us give an example to make this reasoning more clear.

Example IV.2. Take h = 4. The Fischer decomposition yields

P4(Rm−1,Sλ) ∼= H4(Rm−1,Sλ)⊕H2(Rm−1,Sλ)⊕H0(Rm−1,Sλ).
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On the other hand, the branching rules tell us that

H4(Rm,Sλ) ∼=H0(Rm−1,Sλ)⊕H1(Rm−1,Sλ)⊕H2(Rm−1,Sλ)⊕H3(Rm−1,Sλ)

⊕H4(Rm−1,Sλ)

H3(Rm,Sλ) ∼=H0(Rm−1,Sλ)⊕H1(Rm−1,Sλ)⊕H2(Rm−1,Sλ)⊕H3(Rm−1,Sλ)

H2(Rm,Sλ) ∼=H0(Rm−1,Sλ)⊕H1(Rm−1,Sλ)⊕H2(Rm−1,Sλ)

H1(Rm,Sλ) ∼=H0(Rm−1,Sλ)⊕H1(Rm−1,Sλ)

H0(Rm,Sλ) ∼=H0(Rm−1,Sλ).

Hence, we indeed find that

K4,λ
∼=

2⊕
j=0

H2j(Rm,Sλ)−
1⊕
j=0

H2j+1(Rm,Sλ).

Let us take a closer look at the tensor products of the form (k)⊗λ′. According to (III.1),

this tensor product decomposes as

(k)⊗ λ′ =
∑
ζ

(((k)/(ζ ·Q)) · (λ/ζ))′.

The Young diagram corresponding to the partition (k) is given by a horizontal line of k

boxes:

F (k) = · · ·︸ ︷︷ ︸
k

.

Consequently, the only Young diagrams of the partitions η for which (k)/η can give a

non-trivial result must also be a horizontal line. This means that the only partitions ζ in

(k)/(ζ ·Q) that must be considered have horizontal lines as Young diagrams. Hence in the

Littlewood-Richardson product, the only partitions in ζ ·Q, where

F ζ = · · ·︸ ︷︷ ︸
j

that must be considered are the ones where the Young diagrams are of the form

F (j) = · · ·︸ ︷︷ ︸
j

and F (j+1) = · · ·︸ ︷︷ ︸
j+1

.
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These are coming from the Littlewood-Richardson products of ζ with (0), respectively (1).

From this it follows that

(k)⊗ λ′ =
∑
ζ

(((k)/ ((j) + (j + 1))) · (λ/(j)))′

=
∑
j

(((k)/(j)) · (λ/(j)))′ +
∑
j

(((k)/(j + 1)) · (λ/(j)))′

This result holds for all k > 0 ∈ N. Furthermore, following the division rules, we get in this

case that

(k)/(j + 1) = (k − 1)/(j),

as one always has to remove at least one box from the partition (k) for all j ∈ N. Using this

result, we can simplify (IV.1). Since

(h)⊗ λ′ =
∑
j

(((h)/(j)) · (λ/(j)))′ +
∑
j

(((h− 1)/(j)) · (λ/(j)))′

(h− 1)⊗ λ′ =
∑
j

(((h− 1)/(j)) · (λ/(j)))′ +
∑
j

(((h− 2)/(j)) · (λ/(j)))′

(h− 2)⊗ λ′ =
∑
j

(((h− 2)/(j)) · (λ/(j)))′ +
∑
j

(((h− 3)/(j)) · (λ/(j)))′

...

(2)⊗ λ′ =
∑
j

(((2)/(j)) · (λ/(j)))′ +
∑
j

(((1)/(j)) · (λ/(j)))′

(1)⊗ λ′ =
∑
j

(((1)/(j)) · (λ/(j)))′ +
∑
j

(((0)/(j)) · (λ/(j)))′

(0)⊗ λ′ =
∑
j

(((0)/(j)) · (λ/(j)))′,

and the right-hand sides of equation (IV.1) are obtained by alternately adding and subtract-

ing these expressions, equation (IV.1) reduces to

(h)⊗ λ′ =
∑
j

(((h)/(j)) · (λ/(j)))′. (IV.2)

A similar reasoning can be made for the tensor product (k)⊗λ. Together with the results

in1, the decomposition is as follows:

(k)⊗ λ =
∑
ζ

((k)/ζ) · (λ/ζ)

=
∑
j

((k)/(j)) · (λ/(j)).
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We notice that this sum is the same as the one appearing in (IV.2), hence we can conclude

that

Kh,λ ∼= ((h)⊗ λ)′.

One can simplify the expression as little further using the Littlewood-Richardson division

rules:

Kh,λ =
∞∑
j=0

(((h)/(j)) · (λ/(j)))′

=
∞∑
j=0

((h− j) · (λ/(j)))′

=

min(h,l1)∑
j=0

((h− j) · (λ/(j)))′.

We want to know what this sum explicitly decomposes as. Hence, let us calculate the

Littlewood-Richardson products explicitly. Since the prime in the sum is a component-wise

shift of each highest weight vector appearing in the decomposition, we can omit it without

loss of generality, and at the end of the computation add it to each component. So we will

investigate the direct sum
min(h,l1)∑
j=0

(h− j) · (λ/(j)). (IV.3)

Set λ = (l1, . . . , lk) and suppose first of all that h ≥ l1. Since the Young diagram of each (j)

is a horizontal line of boxes, The Young diagrams in λ/(j) are the ones obtained by removing

j boxes from the F λ, such that in each column only the bottom box can be removed. For

instance, if λ = (7, 4, 2, 2, 1), the only boxes that can be removed are the marked ones:

× × ×
× ×

×
×

Since the result after removing the boxes must still be a valid Young diagram, if a box is

removed on a certain row, all boxes on the same row right of it must be removed as well.

This means that in row 1, at most l1 − l2 boxes can be removed, in row 2 at most l2 − l3,

. . ., in row k − 1 at most lk−1 − lk and finally in row k at most lk. Hence,

λ/(j) =

l1−l2∑
i1=0

· · ·
lk−1−lk∑
ik−1=0

lk∑
ik=0

(l1 − i1, . . . , lk − ik),
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with the condition that i1 + · · · + ik = j. This corresponds to the removal of a ‘horizontal

strip’ of length j15. Due to (IV.3) and the fact that h ≥ l1, we must only consider the j’s

where j ≤ l1.

Next, we have to consider the Littlewood-Richardson product with (h − j). Note that

since h ≥ l1, this is always non-trivial. Due to the linearity of this product we have that

(λ/(j)) · (h− j) =

l1−l2∑
i1=0

· · ·
lk−1−lk∑
ik−1=0

lk∑
ik=0

(l1 − i1, . . . , lk − ik) · (h− j).

Each partition in (l1− i1, . . . , lk− ik) · (h− j) is obtained by adding h− j boxes to the Young

diagram of (l1 − i1, . . . , lk − ik). Following the product rules this means that we can add at

most

• lk − ik boxes to row k + 1;

• (lk−1 − ik−1)− (lk − ik) boxes to row k;

• . . .

• (l2 − i2)− (l3 − i3) boxes to row 3;

• (l1 − i1)− (l2 − i2) boxes to row 2;

• the rest of the h− j boxes to row 1.

This means that at most l1 − i1 boxes can be added to rows 2 till k + 1. Hence at least

(h− j)− (l1 − i1) = h− l1 −
k∑
a=2

ia

boxes must be added to row 1. The resulting sum can be at most l2, so to make sure that this

number of boxes is positive, we suppose for now that h ≥ l1+ l2. If this condition is satisfied,

we can also make the following interpretation. Fill up rows 2 to k+ 1 of (l1− i1, . . . , lk− ik)

completely and add the remaining h − l1 −
∑k

a=2 ia boxes to row 1. This results in the

partition (
h−

k∑
a=1

ia, l1 − i1, . . . , lk − ik

)
. (IV.4)
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Then all partitions in (l1 − i1, . . . , lk − ik) · (h − j) are exactly the ones where some of the

added boxes in rows 2 to k + 1 are moved to row 1. Hence

(l1 − i1, . . . , lk − ik) · (h− j)

= (l1 − i1, . . . , lk − ik) · (h−
k∑
a=1

ia)

=

(l1−i1)−(l2−i2)∑
j1=0

· · ·
(lk−1−ik−1)−(lk−ik)∑

jk−1=0

(lk−ik)∑
jk=0

(
h−

k∑
a=1

ia +
k∑
a=1

ja, l1 − i1 − j1, . . . , lk − ik − jk

)
.

Finally, taking the sum over the j’s in (IV.3) corresponds to removing the condition i1 +

· · ·+ ik = j and taking sums over all possible i1, . . . , ik. This means that, if h ≥ l1 + l2, we

get

Kh,λ =

l1−l2∑
i1=0

· · ·
lk∑

ik=0

(l1−i1)−(l2−i2)∑
j1=0

· · ·
(lk−ik)∑
jk=0

(
h+

k∑
a=1

(ja − ia), l1 − i1 − j1, . . . , lk − ik − jk

)′
.

Backtracking the proposed conditions on h, we also find the full decomposition in the cases

where h < l1 + l2. Let us put our findings in a theorem.

Theorem IV.3. The h-homogeneous polynomial kernel space Kh,λ of the higher spin Dirac

operator Qλ, where λ = (l1, . . . , lk) decomposes as follows in irreducible modules for Spin(m):

Kh,λ ∼=
l1−l2⊕
i1=0

· · ·
lk⊕

ik=0

(l1−i1)−(l2−i2)⊕
j1=0

· · ·
(lk−ik)⊕
jk=0

(
h+

k∑
a=1

(ja − ia), l1 − i1 − j1, . . . , lk − ik − jk

)′
,

where one has to put two conditions on the summation indices:

k∑
a=1

ja ≥ l1 − h+
k∑
b=2

ib (IV.5)

and
k∑
a=1

ia ≤ h (IV.6)

Note that (IV.5) is always satisfied if h ≥ l1 + l2 and (IV.6) is always satisfied if h ≥ l1.

In the case where h ≥ l1 + l2, this decomposition is exactly the conjecture made in11, but

were unable to prove without the techniques explained in the current article. Following11,

we can put some extra structure on this decomposition. The HSD operator (II.1) is in fact

a composition of the Dirac operator ∂x and an additional projection operator. This means

that we have two types of solutions to Qλ:

13
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• Type A solutions: solutions to Qλ which are already in the kernel of ∂x.

• Type B solutions: remaining solutions of Qλ that are not of type A.

In the case where h ≥ l1, it was proven in 6 that the polynomial space of h-homogeneous

type A solutions of Qλ, denoted by Ms
h,λ, decomposes as

Ms
h,λ
∼=

l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

(
h+

k∑
a=1

ji, l1 − j1, . . . lk − jk

)′
,

hence

Kh,λ ∼=
l1−l2⊕
i1=0

· · ·
lk⊕

ik=0

Ms
h−

∑k
a=1 ia,l1−i1,...,jk−ik

which proves the conjecture we made in11.

In the case where λ = (l1), we get the full decomposition of the polynomial kernel of the

Rarita-Schwinger operator Rl1 . If h ≥ l1,

Kh,l1 ∼=
l1⊕

i1=0

l1−i1⊕
j1=0

Sh+j1−i1,l1−i1−j1 .

This is in accordance with the original result obtained in3. We can now extend this result

for all h < l1:

Kh,l1 ∼=
h⊕

i1=0

l1−i1⊕
j1=l1−h

Sh+j1−i1,l1−i1−j1 ,

due to the conditions (IV.5) and (IV.6).

To conclude this article, let us give some explicit examples of such kernel decompositions.

Example IV.4. First consider the easiest case, where λ = (0). Then the higher spin Dirac

operator reduces to the classical Dirac operator ∂x, whence the direct sum in Theorem IV.3

reduces to kerh ∂x = Sh, the space of h-homogeneous monogenic functions, as is well-known.

Example IV.5. If h = 2 and λ = (4), then ker2R4 consists of the components

(6, 0)′ (4, 0)′ (2, 0)′

(5, 1)′ (3, 1)′

(4, 2)′

14
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When we consider a case where h ≥ l1, say, h = 5 and λ = (3), the kernel ker5R3 decomposes

as

(8, 0)′ (6, 0)′ (4, 0)′ (2, 0)′

(7, 1)′ (5, 1)′ (3, 1)′

(6, 2)′ (4, 2)′

(5, 3)′

We recognize the triangular structure mentioned in3.

Example IV.6. When we take the length k of λ equal to 2, we get for h = 2 and λ = (4, 1),

we get the decomposition

(5, 0, 0)′ (3, 0, 0)′

(6, 1, 0)′ 2(4, 1, 0)′ (2, 1, 0)′

(5, 2, 0)′ (3, 2, 0)′

(4, 3, 0)′

(5, 1, 1)′ (3, 1, 1)′

(4, 2, 1)′

A case where h ≥ l1 + l2, for instance taking h = 4 and λ = (2, 1) results in a decomposition

(6, 0, 0)′ (4, 0, 0)′ (2, 0, 0)′

(7, 1, 0)′ 2(5, 1, 0)′ 2(3, 1, 0)′ (1, 1, 0)′

(6, 2, 0)′ 2(4, 2, 0)′ (2, 2, 0)′

(5, 3, 0)′ (3, 3, 0)′

(6, 1, 1)′ (4, 1, 1)′ (2, 1, 1)′

(5, 2, 1)′ (3, 2, 1)′

(4, 3, 1)′

V. CONCLUSION

In this article we managed to fully decompose the polynomial kernel space of a general

HSD operator into irreducible modules for the spin group. We hereby found a closed formula

for the h-homogeneous kernel space.
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