118 research outputs found

    Universally distributed single-copy genes indicate a constant rate of horizontal transfer

    Get PDF
    Single copy genes, universally distributed across the three domains of life and encoding mostly ancient parts of the translation machinery, are thought to be only rarely subjected to horizontal gene transfer (HGT). Indeed it has been proposed to have occurred in only a few genes and implies a rare, probably not advantageous event in which an ortholog displaces the original gene and has to function in a foreign context (orthologous gene displacement, OGD). Here, we have utilised an automatic method to identify HGT based on a conservative statistical approach capable of robustly assigning both donors and acceptors. Applied to 40 universally single copy genes we found that as many as 68 HGTs (implying OGDs) have occurred in these genes with a rate of 1.7 per family since the last universal common ancestor (LUCA). We examined a number of factors that have been claimed to be fundamental to HGT in general and tested their validity in the subset of universally distributed single copy genes. We found that differing functional constraints impact rates of OGD and the more evolutionarily distant the donor and acceptor, the less likely an OGD is to occur. Furthermore, species with larger genomes are more likely to be subjected to OGD. Most importantly, regardless of the trends above, the number of OGDs increases linearly with time, indicating a neutral, constant rate. This suggests that levels of HGT above this rate may be indicative of positively selected transfers that may allow niche adaptation or bestow other benefits to the recipient organism

    Prediction of effective genome size in metagenomic samples

    Get PDF
    We introduce a novel computational approach to predict effective genome size (EGS; a measure that includes multiple plasmid copies, inserted sequences, and associated phages and viruses) from short sequencing reads of environmental genomics (or metagenomics) projects. We observe considerable EGS differences between environments and link this with ecologic complexity as well as species composition (for instance, the presence of eukaryotes). For example, we estimate EGS in a complex, organism-dense farm soil sample at about 6.3 megabases (Mb) whereas that of the bacteria therein is only 4.7 Mb; for bacteria in a nutrient-poor, organism-sparse ocean surface water sample, EGS is as low as 1.6 Mb. The method also permits evaluation of completion status and assembly bias in single-genome sequencing projects

    Microbial Co-occurrence Relationships in the Human Microbiome

    Get PDF
    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome

    Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts

    Get PDF
    We lack a deep understanding of genetic and metabolic attributes specializing in microbial consortia for initial and subsequent waves of colonization of our body habitats. Here we show that phylogenetically interspersed bacteria in Clostridium cluster XIVa, an abundant group of bacteria in the adult human gut also known as the Clostridium coccoides or Eubacterium rectale group, contains species that have evolved distribution patterns consistent with either early successional or stable gut communities. The species that specialize to the infant gut are more likely to associate with systemic infections and can reach high abundances in individuals with Inflammatory Bowel Disease (IBD), indicating that a subset of the microbiota that have adapted to pioneer/opportunistic lifestyles may do well in both early development and with disease. We identified genes likely selected during adaptation to pioneer/opportunistic lifestyles as those for which early succession association and not phylogenetic relationships explain genomic abundance. These genes reveal potential mechanisms by which opportunistic gut bacteria tolerate osmotic and oxidative stress and potentially important aspects of their metabolism. These genes may not only be biomarkers of properties associated with adaptation to early succession and disturbance, but also leads for developing therapies aimed at promoting reestablishment of stable gut communities following physiologic or pathologic disturbances

    Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data

    Get PDF
    Using metagenomic ‘parts lists' to study microbial ecology remains a significant challenge. This work proposes a molecular trait-based approach to biogeography by integrating metagenomic data with external metadata and using functional community composition as readout

    Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat

    Get PDF
    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that were consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near-identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino-acid usage, indicating that hypersalinity enforces an overriding selective pressure on the mat community

    Assessment of Metagenomic Assembly Using Simulated Next Generation Sequencing Data

    Get PDF
    Due to the complexity of the protocols and a limited knowledge of the nature of microbial communities, simulating metagenomic sequences plays an important role in testing the performance of existing tools and data analysis methods with metagenomic data. We developed metagenomic read simulators with platform-specific (Sanger, pyrosequencing, Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly improved the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies assembled a similar amount and accurately represented the expected functional composition. For the more complex community (100 genomes) Illumina produced the best assemblies and more correctly resembled the expected functional composition. For the most complex community (400 genomes) there was very little assembly of reads from any sequencing technology. However, due to the longer read length the Sanger reads still represented the overall functional composition reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically increased contig lengths of the simple community and yielded minor improvements to the more complex communities. Although the increase in contig length was accompanied by increased chimericity, it resulted in more complete genes and a better characterization of the functional repertoire. The metagenomic simulators developed for this research are freely available

    Reduced anticoagulation targets in extracorporeal life support (RATE):study protocol for a randomized controlled trial

    Get PDF
    BackgroundAlthough life-saving in selected patients, ECMO treatment still has high mortality which for a large part is due to treatment-related complications. A feared complication is ischemic stroke for which heparin is routinely administered for which the dosage is usually guided by activated partial thromboplastin time (aPTT).However, there is no relation between aPTT and the rare occurrence of ischemic stroke (1.2%), but there is a relation with the much more frequent occurrence of bleeding complications (55%) and blood transfusion. Both are strongly related to outcome.MethodsWe will conduct a three-arm non-inferiority randomized controlled trial, in adult patients treated with ECMO. Participants will be randomized between heparin administration with a target of 2–2.5 times baseline aPTT, 1.5–2 times baseline aPTT, or low molecular weight heparin guided by weight and renal function. Apart from anticoagulation targets, treatment will be according to standard care. The primary outcome parameter is a combined endpoint consisting of major bleeding including hemorrhagic stroke, severe thromboembolic complications including ischemic stroke, and mortality at 6 months.DiscussionWe hypothesize that with lower anticoagulation targets or anticoagulation with LMWH during ECMO therapy, patients will have fewer hemorrhagic complications without an increase in thromboembolic complication or a negative effect on their outcome. If our hypothesis is confirmed, this study could lead to a change in anticoagulation protocols and a better outcome for patients treated with ECMO.Trial registrationClinicalTrials.gov NCT04536272. Registered on 2 September 2020. Netherlands Trial Register NL796

    Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    Get PDF
    Background: Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely toinfluence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide.Principal Findings: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (.2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between 221.9760.86% and 224.8561.89%) were indicative of a phytoplankton-derived food source.Conclusion: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species
    corecore