42 research outputs found

    The use of simulation to prepare and improve responses to infectious disease outbreaks like COVID-19: practical tips and resources from Norway, Denmark, and the UK.

    Get PDF
    In this paper, we describe the potential of simulation to improve hospital responses to the COVID-19 crisis. We provide tools which can be used to analyse the current needs of the situation, explain how simulation can help to improve responses to the crisis, what the key issues are with integrating simulation into organisations, and what to focus on when conducting simulations. We provide an overview of helpful resources and a collection of scenarios and support for centre-based and in situ simulations

    CD56negCD16+NK cells are activated mature NK cells with impaired effector function during HIV-1 infection

    Get PDF
    BACKGROUND: A subset of CD3(neg)CD56(neg)CD16(+) Natural Killer (NK) cells is highly expanded during chronic HIV-1 infection. The role of this subset in HIV-1 pathogenesis remains unclear. The lack of NK cell lineage-specific markers has complicated the study of minor NK cell subpopulations. RESULTS: Using CD7 as an additional NK cell marker, we found that CD3(neg)CD56(neg)CD16(+) cells are a heterogeneous population comprised of CD7(+) NK cells and CD7(neg) non-classical myeloid cells. CD7(+)CD56(neg)CD16(+) NK cells are significantly expanded in HIV-1 infection. CD7(+)CD56(neg)CD16(+) NK cells are mature and express KIRs, the C-type lectin-like receptors NKG2A and NKG2C, and natural cytotoxicity receptors similar to CD7(+)CD56(+)CD16(+) NK cells. CD7(+)CD56(neg) NK cells in healthy donors produced minimal IFNγ following K562 target cell or IL-12 plus IL-18 stimulation; however, they degranulated in response to K562 stimulation similar to CD7(+)CD56(+) NK cells. HIV-1 infection resulted in reduced IFNγ secretion following K562 or cytokine stimulation by both NK cell subsets compared to healthy donors. Decreased granzyme B and perforin expression and increased expression of CD107a in the absence of stimulation, particularly in HIV-1-infected subjects, suggest that CD7(+)CD56(neg)CD16(+) NK cells may have recently engaged target cells. Furthermore, CD7(+)CD56(neg)CD16(+) NK cells have significantly increased expression of CD95, a marker of NK cell activation. CONCLUSIONS: Taken together, CD7(+)CD56(neg)CD16(+) NK cells are activated, mature NK cells that may have recently engaged target cells

    Using Educational Games to Engage Students in Veterinary Basic Sciences

    No full text
    corecore