79 research outputs found

    The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility

    Get PDF
    This work was supported by grants from the Canadian Institutes of Health Research to J.W. (MOP57697, MOP69089 and MOP 123389), H.L. (MOP97829), and G.C. (CMI72323). It was also financed by grants from the Natural Sciences and Engineering Research Council of Canada (203906-2012), and the J.-Louis Levesque Foundation to J.W. This study was also made possible by a group grant from the National Sciences Foundation of China (#81361120264) to J.S., S.H. T.W. and J.W. The funders provided support in the form of salaries for authors [Y.W.; Z.W.; H.L.; J.P.; J.R.], and experimental costs, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the “author contributions”. The authors thank Regeneron Pharmaceuticals for generously providing Efnb3 KO mice. The authors thank all the authors of the International Consortium for Blood Pressure Genome-Wide Association Studies for allow us to mine the study dataset

    TGFBI ( IG-H3) is a diabetes-risk gene based on mouse and human genetic studies

    Get PDF
    Transforming growth factor beta-induced (TGFBI/βIG-H3), also known as βig-H3, is a protein inducible by TGFβ1 and secreted by many cell types. It binds to collagen, forms part of the extracellular matrix and interacts with integrins on the cell surface. Recombinant TGFBI and transgenic TGFBI overexpression can promote both islet survival and function. In this study, we generated TGFBI KO mice and further assessed TGFBI function and signaling pathways in islets. Islets from KO mice were of normal size and quantity, and these animals were normoglycemic. However, KO islet survival and function was compromised in vitro. In vivo, KO donor islets became inferior to wild-type donor islets in achieving normoglycemia when transplanted into KO diabetic recipients. TGFBI KO mice were more prone to straptozotocin-induced diabetes than the wild-type counterpart. Phosphoprotein array analysis established that AKT1S1, a molecule linking the AKT and mTORC1 signaling pathways, was modulated by TGFBI in islets. Phosphorylation of four molecules in the AKT and mTORC1 signaling pathway, i.e. AKT, AKT1S1, RPS6 and EIF4EBP1, was upregulated in islets upon TGFBI stimulation. Suppression of AKT activity by a chemical inhibitor, or knockdown of AKT1S1, RPS6 and EIF4EBP1 expression by small interfering RNA, modulated islet survival, proving the relevance of these molecules in TGFBI-triggered signaling. Human genetic studies revealed that in the TGFBI gene and its vicinity, three single-nucleotide polymorphisms were significantly associated with type 1 diabetes risks, and one with type 2 diabetes risks. Our study suggests that TGFBI is a potential risk gene for human diabetes

    Hotspots of Large Rare Deletions in the Human Genome

    Get PDF
    Background: We have examined the genomic distribution of large rare autosomal deletions in a sample of 440 parentparent-child trios from the Quebec founder population (QFP) which was recruited for a study of Attention Deficit Hyperactivity Disorder. Methodology/Principal Findings: DNA isolated from blood was genotyped on Illumina Hap300 arrays. PennCNV combined with visual evaluation of images generated by the Beadstudio program was used to determine deletion boundary definition of sufficient precision to discern independent events, with near-perfect concordance between parent and child in about 98 % of the 399 events detected in the offspring; the remaining 7 deletions were considered de novo. We defined several genomic regions of very high deletion frequency (‘hotspots’), usually of 0.4–0.6 Mb in length where independent rare deletions were found at frequencies of up to 100 fold higher than the average for the genome as a whole. Five of the 7 de novo deletions were in these hotspots. The same hotspots were also observed in three other studies on members of the QFP, those with schizophrenia, with endometriosis and those from a longevity cohort. Conclusions/Significance: Nine of the 13 hotspots carry one gene (7 of which are very long), while the rest contain no known genes. All nine genes have been implicated in disease. The patterns of exon deletions support the proposed roles for some of these genes in human disease, such as NRXN1 and PARKIN, and suggest limited roles or no role at all, for others

    Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies (GWAS) aim to identify genetic variants (usually single nucleotide polymorphisms [SNPs]) across the entire human genome that are associated with phenotypic traits such as disease status and drug response. Highly accurate and reproducible genotype calling are paramount since errors introduced by calling algorithms can lead to inflation of false associations between genotype and phenotype. Most genotype calling algorithms currently used for GWAS are based on multiple arrays. Because hundreds of gigabytes (GB) of raw data are generated from a GWAS, the samples are typically partitioned into batches containing subsets of the entire dataset for genotype calling. High call rates and accuracies have been achieved. However, the effects of batch size (i.e., number of chips analyzed together) and of batch composition (i.e., the choice of chips in a batch) on call rate and accuracy as well as the propagation of the effects into significantly associated SNPs identified have not been investigated. In this paper, we analyzed both the batch size and batch composition for effects on the genotype calling algorithm BRLMM using raw data of 270 HapMap samples analyzed with the Affymetrix Human Mapping 500 K array set.</p> <p>Results</p> <p>Using data from 270 HapMap samples interrogated with the Affymetrix Human Mapping 500 K array set, three different batch sizes and three different batch compositions were used for genotyping using the BRLMM algorithm. Comparative analysis of the calling results and the corresponding lists of significant SNPs identified through association analysis revealed that both batch size and composition affected genotype calling results and significantly associated SNPs. Batch size and batch composition effects were more severe on samples and SNPs with lower call rates than ones with higher call rates, and on heterozygous genotype calls compared to homozygous genotype calls.</p> <p>Conclusion</p> <p>Batch size and composition affect the genotype calling results in GWAS using BRLMM. The larger the differences in batch sizes, the larger the effect. The more homogenous the samples in the batches, the more consistent the genotype calls. The inconsistency propagates to the lists of significantly associated SNPs identified in downstream association analysis. Thus, uniform and large batch sizes should be used to make genotype calls for GWAS. In addition, samples of high homogeneity should be placed into the same batch.</p

    An Investigation of Genome-Wide Studies Reported Susceptibility Loci for Ulcerative Colitis Shows Limited Replication in North Indians

    Get PDF
    Genome-Wide Association studies (GWAS) of both Crohn's Disease (CD) and Ulcerative Colitis (UC) have unearthed over 40 risk conferring variants. Recently, a meta-analysis on UC revealed several loci, most of which were either previously associated with UC or CD susceptibility in populations of European origin. In this study, we attempted to replicate these findings in an ethnically distinct north Indian UC cohort. 648 UC cases and 850 controls were genotyped using Infinium Human 660W-quad. Out of 59 meta-analysis index SNPs, six were not in the SNP array used in the study. Of the remaining 53 SNPs, four were found monomorphic. Association (p<0.05) at 25 SNPs was observed, of which 15 were CD specific. Only five SNPs namely rs2395185 (HLA-DRA), rs3024505 (IL10), rs6426833 (RNF186), rs3763313 (BTNL2) and rs2066843 (NOD2) retained significance after Bonferroni correction. These results (i) reveal limited replication of Caucasian based meta-analysis results; (ii) reiterate overlapping molecular mechanism(s) in UC and CD; (iii) indicate differences in genetic architecture between populations; and (iv) suggest that resources such as HapMap need to be extended to cover diverse ethnic populations. They also suggest a systematic GWAS in this terrain may be insightful for identifying population specific IBD risk conferring loci and thus enable cross-ethnicity fine mapping of disease loci

    Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q

    Get PDF
    Genome-wide association studies (GWAS) in several populations have demonstrated significant association of the IL23R gene with IBD (Crohn's disease (CD) and ulcerative colitis (UC)) and psoriasis, suggesting that perturbation of the IL-23 signaling pathway is relevant to the pathophysiology of these diseases. One particular variant, R381Q (rs11209026), confers strong protection against development of CD. We investigated the effects of this variant in primary T cells from healthy donors carrying IL23RR381 and IL23RQ381 haplotypes. Using a proprietary anti-IL23R antibody, ELISA, flow cytometry, phosphoflow and real-time RT-PCR methods, we examined IL23R expression and STAT3 phosphorylation and activation in response to IL-23. IL23RQ381 was associated with reduced STAT3 phosphorylation upon stimulation with IL-23 and decreased number of IL-23 responsive T-cells. We also observed slightly reduced levels of proinflammatory cytokine secretion in IL23RQ381 positive donors. Our study shows conclusively that IL23RQ381 is a loss-of-function allele, further strengthening the implication from GWAS results that the IL-23 pathway is pathogenic in human disease. This data provides an explanation for the protective role of R381Q in CD and may lead to the development of improved therapeutics for autoimmune disorders like CD

    Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples

    Get PDF
    The discordance in results of independent genome-wide association studies (GWAS) indicates the potential for Type I and Type II errors. We assessed the repeatibility of current Affymetrix technologies that support GWAS. Reasonable reproducibility was observed for both raw intensity and the genotypes/copy number variants. We also assessed consistencies between different SNP arrays and between genotype calling algorithms. We observed that the inconsistency in genotypes was generally small at the specimen level. To further examine whether the differences from genotyping and genotype calling are possible sources of variation in GWAS results, an association analysis was applied to compare the associated SNPs. We observed that the inconsistency in genotypes not only propagated to the association analysis, but was amplified in the associated SNPs. Our studies show that inconsistencies between SNP arrays and between genotype calling algorithms are potential sources for the lack of reproducibility in GWAS results

    The Impact of Phenocopy on the Genetic Analysis of Complex Traits

    Get PDF
    A consistent debate is ongoing on genome-wide association studies (GWAs). A key point is the capability to identify low-penetrance variations across the human genome. Among the phenomena reducing the power of these analyses, phenocopy level (PE) hampers very seriously the investigation of complex diseases, as well known in neurological disorders, cancer, and likely of primary importance in human ageing. PE seems to be the norm, rather than the exception, especially when considering the role of epigenetics and environmental factors towards phenotype. Despite some attempts, no recognized solution has been proposed, particularly to estimate the effects of phenocopies on the study planning or its analysis design. We present a simulation, where we attempt to define more precisely how phenocopy impacts on different analytical methods under different scenarios. With our approach the critical role of phenocopy emerges, and the more the PE level increases the more the initial difficulty in detecting gene-gene interactions is amplified. In particular, our results show that strong main effects are not hampered by the presence of an increasing amount of phenocopy in the study sample, despite progressively reducing the significance of the association, if the study is sufficiently powered. On the opposite, when purely epistatic effects are simulated, the capability of identifying the association depends on several parameters, such as the strength of the interaction between the polymorphic variants, the penetrance of the polymorphism and the alleles (minor or major) which produce the combined effect and their frequency in the population. We conclude that the neglect of the possible presence of phenocopies in complex traits heavily affects the analysis of their genetic data

    Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    Get PDF
    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family
    corecore