2,680 research outputs found
A Study of Meteoroid Impact Phenomena
Process of crater formation resulting from impact of hypervelocity projectile - meteoroid impac
On the transonic aerodynamics of a compressor blade row
Linearized analyses have been carried out for the induced velocity and pressure fields within a compressor blade row operating in an infinite annulus at transonic Mach numbers of the flow relative to the blades. In addition, the relationship between the induced velocity and the shape of the mean blade surface has been determined. A computational scheme has been developed for evaluating the blade mean surface ordinates and surface pressure distributions. The separation of the effects of a specified blade thickness distribution from the effects of a specified distribution of the blade lift has been established. In this way, blade mean surface shapes that are necessary for the blades to be locally nonlifting have been computed and are presented for two examples of blades with biconvex parabolic arc sections of radially tapering thickness. Blade shapes that are required to achieve a zero thickness, uniform chordwise loading, constant work spanwise loading are also presented for two examples. In addition, corresponding surface pressure distributions are given. The flow relative to the blade tips has a high subsonic Mach number in the examples that have been computed. The results suggest that at near-sonic relative tip speeds the effective blade shape is dominated by the thickness distribution, with the lift distribution playing only a minor role
Comments on the solution of the spall-fracture problem in the approximation of linear elasticity
Spall fracture problem solution in linear elasticity approximatio
Recommended from our members
On the magnetospheric ULF wave counterpart of substorm onset
One near‐ubiquitous signature of substorms observed on the ground is the azimuthal structuring of the onset auroral arc in the minutes prior to onset. Termed auroral beads, these optical signatures correspond to concurrent exponential increases in ground ultralow frequency (ULF) wave power and are likely the result of a plasma instability in the magnetosphere. Here, we present a case study showing the development of auroral beads from a Time History of Events and Macroscale Interactions during Substorms (THEMIS) all‐sky camera with near simultaneous exponential increases in auroral brightness, ionospheric and conjugate magnetotail ULF wave power, evidencing their intrinsic link. We further present a survey of magnetic field fluctuations in the magnetotail around substorm onset. We find remarkably similar superposed epoch analyses of ULF power around substorm onset from space and conjugate ionospheric observations. Examining periods of exponential wave growth, we find the ground‐ and space‐based observations to be consistent, with average growth rates of ∼0.01 s−1, lasting for ∼4 min. Cross‐correlation suggests that the space‐based observations lead those on the ground by approximately 1–1.5 min. Meanwhile, spacecraft located premidnight and ∼10 RE downtail are more likely to observe enhanced wave power. These combined observations lead us to conclude that there is a magnetospheric counterpart of auroral beads and exponentially increasing ground ULF wave power. This is likely the result of the linear phase of a magnetospheric instability, active in the magnetotail for several minutes prior to auroral breakup
The role of copper in disulfiram-induced toxicity and radiosensitisation of cancer cells.
Abstract Disulfiram has been used for several decades in the treatment of alcoholism. It now shows promise as an anti-cancer drug and radiosensitizer. Proposed mechanisms of action include the induction of oxidative stress and inhibition of proteasome activity. Our purpose was to determine the potential of disulfiram to enhance the anti-tumor efficacy of external beam -irradiation and 131I-metaiodobenzylguanidine (131I-MIBG), a radiopharmaceutical used for the therapy of neuroendocrine tumors. Methods: The role of copper in disulfiram-induced toxicity was investigated by clonogenic assay after treatment of human SK-N-BE(2c) neuroblastoma and UVW/NAT glioma cells. Synergistic interaction between disulfiram and radiotherapy was evaluated by combination index analysis. Tumor growth delay was determined in vitro using multicellular tumor spheroids and in vivo using human tumor xenografts in athymic mice. Results: Escalating disulfiram dosage caused a biphasic reduction in the surviving fraction of clonogens. Clonogenic cell kill after treatment with disulfiram concentrations less than 4 M was copper-dependent, whereas cytotoxicity at concentrations greater than 10 M was caused by oxidative stress. The cytotoxic effect of disulfiram was maximal when administered with equimolar copper. Likewise, disulfiram’s radiosensitization of tumor cells was copper-dependent. Furthermore, disulfiram treatment enhanced the toxicity of 131I-MIBG to spheroids and xenografts expressing the noradrenaline transporter. Conclusions: The results demonstrate that (i) the cytotoxicity of disulfiram was copper-dependent; (ii) molar excess of disulfiram relative to copper resulted in attenuation of disulfiram-mediated cytotoxicity; (iii) copper was required for the radiosensitizing activity of disulfiram and (iv) copper-complexed disulfiram enhanced the efficacy not only of external beam radiation but also of targeted radionuclide therapy in the form of 131I-MIBG. Therefore disulfiram may have anti-cancer potential in combination with radiotherapy
Theory of ground state cooling of a mechanical oscillator using dynamical back-action
A quantum theory of cooling of a mechanical oscillator by radiation
pressure-induced dynamical back-action is developed, which is analogous to
sideband cooling of trapped ions. We find that final occupancies well below
unity can be attained when the mechanical oscillation frequency is larger than
the cavity linewidth. It is shown that the final average occupancy can be
retrieved directly from the optical output spectrum.Comment: 5 pages, 2 figure
First Order Premelting Transition of Vortex Lattices
Vortex lattices in the high temperature superconductors undergo a first order
phase transition which has thus far been regarded as melting from a solid to a
liquid. We point out an alternative possibility of a two step process in which
there is a first order transition from an ordinary vortex lattice to a soft
vortex solid followed by another first order melting transition from the soft
vortex solid to a vortex liquid. We focus on the first step. This premelting
transition is induced by vacancy and interstitial vortex lines. We obtain good
agreement with the experimental transition temperature versus field, latent
heat, and magnetization jumps for YBCO and BSCCO.Comment: revised version replaces 9705092, 5 pages, Latex, 2 postscript
figures, defect line wandering is included, 2 step melting is propose
Statistics of Solar Wind Electron Breakpoint Energies Using Machine Learning Techniques
Solar wind electron velocity distributions at 1 au consist of a thermal
"core" population and two suprathermal populations: "halo" and "strahl". The
core and halo are quasi-isotropic, whereas the strahl typically travels
radially outwards along the parallel and/or anti-parallel direction with
respect to the interplanetary magnetic field. With Cluster-PEACE data, we
analyse energy and pitch angle distributions and use machine learning
techniques to provide robust classifications of these solar wind populations.
Initially, we use unsupervised algorithms to classify halo and strahl
differential energy flux distributions to allow us to calculate relative number
densities, which are of the same order as previous results. Subsequently, we
apply unsupervised algorithms to phase space density distributions over ten
years to study the variation of halo and strahl breakpoint energies with solar
wind parameters. In our statistical study, we find both halo and strahl
suprathermal breakpoint energies display a significant increase with core
temperature, with the halo exhibiting a more positive correlation than the
strahl. We conclude low energy strahl electrons are scattering into the core at
perpendicular pitch angles. This increases the number of Coulomb collisions and
extends the perpendicular core population to higher energies, resulting in a
larger difference between halo and strahl breakpoint energies at higher core
temperatures. Statistically, the locations of both suprathermal breakpoint
energies decrease with increasing solar wind speed. In the case of halo
breakpoint energy, we observe two distinct profiles above and below 500 km/s.
We relate this to the difference in origin of fast and slow solar wind.Comment: Published in Astronomy & Astrophysics, 11 pages, 10 figure
- …