3,116 research outputs found
Recommended from our members
On the magnetospheric ULF wave counterpart of substorm onset
One nearâubiquitous signature of substorms observed on the ground is the azimuthal structuring of the onset auroral arc in the minutes prior to onset. Termed auroral beads, these optical signatures correspond to concurrent exponential increases in ground ultralow frequency (ULF) wave power and are likely the result of a plasma instability in the magnetosphere. Here, we present a case study showing the development of auroral beads from a Time History of Events and Macroscale Interactions during Substorms (THEMIS) allâsky camera with near simultaneous exponential increases in auroral brightness, ionospheric and conjugate magnetotail ULF wave power, evidencing their intrinsic link. We further present a survey of magnetic field fluctuations in the magnetotail around substorm onset. We find remarkably similar superposed epoch analyses of ULF power around substorm onset from space and conjugate ionospheric observations. Examining periods of exponential wave growth, we find the groundâ and spaceâbased observations to be consistent, with average growth rates of âŒ0.01 sâ1, lasting for âŒ4 min. Crossâcorrelation suggests that the spaceâbased observations lead those on the ground by approximately 1â1.5 min. Meanwhile, spacecraft located premidnight and âŒ10 RE downtail are more likely to observe enhanced wave power. These combined observations lead us to conclude that there is a magnetospheric counterpart of auroral beads and exponentially increasing ground ULF wave power. This is likely the result of the linear phase of a magnetospheric instability, active in the magnetotail for several minutes prior to auroral breakup
Carbon cycle dynamics during episodes of rapid climate change
Past climate records reveal many instances of rapid climate change that are often coincident with fast changes in atmospheric greenhouse gas concentrations, suggesting links and positive feedbacks between the carbon cycle and the physical climate system. The carbon reservoirs that might have played an important role during these past episodes of rapid change include near-surface soil and peatland carbon, permafrost, carbon stored in vegetation, methane hydrates in deep-sea sediments, volcanism, and carbon stored in parts of the ocean that are easily ventilated through changes in circulation. To determine whether similar changes might lie in store in our future, we must gain a better understanding of the physics, biogeochemistry, dynamics, and feedbacks involved in such events. Specifically, we need to ascertain the main natural sources of atmospheric carbon dioxide and methane linked to rapid climate events in the paleoclimate record, and understand the mechanisms, triggers, thresholds, and feedbacks that were involved. Our review contributes to this focus issue by synthesizing results from nine studies covering a broad range of past time episodes. Studies are categorized into (a) episodes of massive carbon release millions of years ago; (b) the transition from the last glacial to the current interglacial 19 000â11 000 years ago; and (c) the current era. We conclude with a discussion on major remaining research challenges and implications for future projections and risk assessment.Publisher PDFPeer reviewe
Pharmacogenomic studies using paraffin embedded tumor samples
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109786/1/cptclpt2003296.pd
Statistics of Solar Wind Electron Breakpoint Energies Using Machine Learning Techniques
Solar wind electron velocity distributions at 1 au consist of a thermal
"core" population and two suprathermal populations: "halo" and "strahl". The
core and halo are quasi-isotropic, whereas the strahl typically travels
radially outwards along the parallel and/or anti-parallel direction with
respect to the interplanetary magnetic field. With Cluster-PEACE data, we
analyse energy and pitch angle distributions and use machine learning
techniques to provide robust classifications of these solar wind populations.
Initially, we use unsupervised algorithms to classify halo and strahl
differential energy flux distributions to allow us to calculate relative number
densities, which are of the same order as previous results. Subsequently, we
apply unsupervised algorithms to phase space density distributions over ten
years to study the variation of halo and strahl breakpoint energies with solar
wind parameters. In our statistical study, we find both halo and strahl
suprathermal breakpoint energies display a significant increase with core
temperature, with the halo exhibiting a more positive correlation than the
strahl. We conclude low energy strahl electrons are scattering into the core at
perpendicular pitch angles. This increases the number of Coulomb collisions and
extends the perpendicular core population to higher energies, resulting in a
larger difference between halo and strahl breakpoint energies at higher core
temperatures. Statistically, the locations of both suprathermal breakpoint
energies decrease with increasing solar wind speed. In the case of halo
breakpoint energy, we observe two distinct profiles above and below 500 km/s.
We relate this to the difference in origin of fast and slow solar wind.Comment: Published in Astronomy & Astrophysics, 11 pages, 10 figure
The Balance Between Preventing Fraud and Ensuring Participation: Attitudes Towards Voter Identification in New Mexico
This paper examines public opinion on the effectiveness and consequences of voter identification laws in New Mexico. In particular, it focuses on the attitudes central to the court reasoning in the 2008 Supreme Court case which upheld an Indiana photo-ID law, Crawford v. Marion County Election Board. Questions include whether or not voters think the ID laws protect against fraud and prevent legitimate participation, as well as which point of view voters find more compelling and whether or not attitudes towards voter identification are related to voter confidence. While most voters think that voter ID laws prevent fraud, many voters think that ensuring access to the polls is more important than preventing fraud. Among other variables that explain differences among individuals, partisanship plays an important role.Caltech/MIT Voting Technology Projec
Bore seal technology topical report
Thermophysical, compatibility, and mechanical properties of ceramic-to-metal bore seal material
Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines
We investigate the self-phase modulation of intense femtosecond laser pulses
propagating in an ionizing gas and its effects on collective properties of
high-order harmonics generated in the medium. Plasmas produced in the medium
are shown to induce a positive frequency chirp on the leading edge of the
propagating laser pulse, which subsequently drives high harmonics to become
positively chirped. In certain parameter regimes, the plasma-induced positive
chirp can help to generate sharply peaked high harmonics, by compensating for
the dynamically-induced negative chirp that is caused by the steep intensity
profile of intense short laser pulses.Comment: 5 pages, 5 figure
Recommended from our members
Statistical characterisation of the growth and spatial scales of the substorm onset arc
We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λâ1700 â 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations
Recommended from our members
Statistical azimuthal structuring of the substorm onset arc: implications for the onset mechanism
The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently-selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself
Interaction of Agulhas filaments with mesoscale turbulence: a case study
The inter-ocean leakage of heat and salt from the South Indian Ocean to the South Atlantic has important consequences for the global thermohaline circulation and in particular for the strength of overturning of the Atlantic Ocean as a whole. This leakage between these two subtropical gyres takes place south of Africa. The main mechanisms are the intermittent shedding of Agulhas rings from the retroflection of the Agulhas Current and the advection of Agulhas filaments from the border of the Agulhas Current, both of which move northwestward into the South Atlantic. The subsequent behaviour and mixing of Agulhas rings has been much studied over the past years, that of Agulhas filaments not at all. We report here on fortuitous hydrographic observations of the behaviour of an Agulhas filament that interacted with a number of mesoscale features shortly after formation. This suggests that Agulhas filaments may be involved in many other circulation elements and not only the Benguela upwelling front, as was surmised previously, and may mix out in a very site-specific region
- âŠ