147 research outputs found

    Effect of electrolyte on synergism of anionic-nonionic surfactant mixture

    Get PDF
    In this study, anionic (Sodium Dodecyl Sulfate) and nonionic (Triton X l00) surfactants mixture (1:1 mass ratio) were evaluated for synergism in Critical Micelle Concentration (CMC) at different ionic strength values. Interaction between the binary surfactant mixture was studied by surface and interfacial tensions. The composition of mixed micelles and the interaction parameter, β evaluated from the CMC data obtained by both surface and interfacial tensions for different systems using Rubingh’ s theory were discussed. It has been shown, that the, micellization behavior of the mixture was improved significantly in presence of salt in particular after equilibration with shale

    Nanotechnology Application in Chemical Enhanced Oil Recovery: Current Opinion and Recent Advances

    Get PDF
    Chemical enhanced oil recovery (EOR) has been adjudged as an efficient oil recovery technique to recover bypassed oil and residual oil trapped in the reservoir. This EOR method relies on the injection of chemicals to boost oil recovery. Recently, due to the limitations of the application of chemical EOR methods to reservoirs having elevated temperatures and high salinity and hardness concentrations, nanotechnology have been applied to enhance its efficiency and improve oil productivity. The synergistic combination of nanoparticles and conventional EOR chemicals has opened new routes for the synthesis and application of novel materials with sterling and fascinating properties. In this chapter, an up-to-date synopsis of nanotechnology applications in chemical EOR is discussed. A detailed explanation of the mechanism and applications of these novel methods for oil recovery are appraised and analyzed. Finally, experimental and laboratory results were outlined. This overview presents extensive information about new frontiers in chemical EOR applications for sustainable energy production

    Extraction, characterization and evaluation of saponin-based natural surfactant for enhanced oil recovery

    Get PDF
    To minimize environmental impact and costs, natural surfactants are suggested as an ecologically sustainable replacement for synthetic surfactants. The aim of this work is to evaluate the efficiency of low-cost saponin-based natural surfactant (SBNS) from Vernonia amygdalina (VA) leaves for enhanced oil recovery (EOR). Furthermore, the study investigated the IFT behaviour of SBNS at oil-water interface and the emulsion behaviour and oil displacement efficiency of SBNS. The SBNS was obtained via ultrasonic extraction of dried VA leaves in a water bath, centrifuging the obtained liquid mixture and freeze drying to evaporate to dryness. Thereafter, Fourier-transform infrared spectroscopy (FTIR) and high-performance liquid chromatography were used to characterize the extracted SBNS. Moreover, tensiometer (Easy-Dyne KRUSS) was used to study the interfacial tension (IFT) behaviour of the SBNS at oil-water interface. Also, the SBNS ability to form stable emulsion in the presence of crude oil was determined. Finally, oil displacement by SBNS solution was investigated under simulated reservoir conditions (3000 psi and 100 °C) with high-pressure high-temperature (Fars EOR) core flooding equipment. The performance of SBNS was compared to commercial non-ionic surfactant 4-octylphenol polyethoxylated (TX-100). Experimental result indicated that the SBNS reduced the IFT at oil-water interface. The natural surfactant lowered the IFT of the oil-water interface from 18.0 to 0.97 mN/m. Moreover, emulsions formed with SBNS showed good stability characterized by a decrease in the median drop diameter with an increase in SBNS concentration. Finally, oil displacement test shows that oil recovery of TX-100 and SBNS increased by 9% and 15% original-oil-in-place (OOIP), respectively. Hence, SBNS is recommended as an appropriate substitute for conventional surfactant due to its inexpensive raw material, lower toxicity, and higher efficiency

    Study on the effectiveness of in-situ high intensity ultrasonic (HIU) in increasing the rate of filtration in palm oil industries.

    Get PDF
    Palm oil industry has been the bread and butter of Malaysian industry ever since palm tree was brought into the country in the 1960’s. The fast growth of this industry has made Malaysia to be the largest producer of palm oil for many years. Palm tree is easily grown in tropical climate countries. Hence, the profitable industry has been adopted by neighboring countries such as Thailand, Indonesia, Vietnam, Cambodia, as well as Philippines. Realizing the competitiveness of the industry and the advantages of neighboring countries with large cultivating land, much research has been focused on improving the overall operation of the industry so as to increase its productivity

    The effects of controlling parameters on polymer enhanced foam (PEF) stability

    Get PDF
    In the present study, four surfactants including AOS, SDS, SDBS, and TX100 were used as the foaming agent and a PHPA polymer with relatively low to high concentrations was added to the solutions prepared in both fresh water and 8 wt. % NaCl. Also, paraffin and vaseline oils with different viscosities were used to investigate the effect of oil on PEF stability. Polymer addition to foam can effectively improve foam stability compared with conventional foam stability. In addition, the polymer concentration increase could lead to foam stability increase; thus, the maximum polymer concentration in solutions could produce the most stable foam. Solutions with 8 wt. % NaCl had destabilizing effect, that is, unlike solutions with fresh water, it slightly reduced foam stability. Contacted oil in the solutions could substantially reduce foam stability. Also, the destabilizing effect was more severe with paraffin oil rather than vaseline oil. Of all the four surfactants used in this research, SDS had the highest compatibility with PHPA and produced the most stable foam, while AOS, SDBS, and finally TX100 surfactants were in next orders. In addition, microscopic photos showed that the type of solution has a significant effect on bubble size and foam stabilit

    Fracture modeling in oil and gas reservoirs using image logs data and petrel software

    Get PDF
    The purpose of modelling the fractures is to create simulation properties with the power to predict the reservoir behaviour. Petrel software is one of the best softwares in the market that can do this task very well, but there is no available educational paper for every researcher. Therefore, in this work, a fracture modelling job was done in one of the most important Iranian fields using Petrel software and image log data. The purpose of this work was to determine the new information of the fractures in Gachsaran field and also to prepare a valuable educational paper for other researchers who are interested to learn about the fracture modelling. This work revealed that in this field, the longitudinal fractures had been parallel to minimum stress (Zagros trend), fracture intensity was the nearest to the major fault and northern flank, fracture porosity was 0-7%, fracture permeability was 0-6000 MD, and more valuable information is provided in this paper

    A new technique to predict the fractures DIP using artificial neural networks and image logs data

    Get PDF
    Fractures provide the place for oil and gas to be reserved and they also can provide the pathway for them to move into the well, so having a proper knowledge of them is essential and every year the companies try to improve the existed softwares in this technology. In this work, the new technique is introduced to be added as a new application to the existed softwares such as Petrel and geoframe softwares. The data used in this work are image logs and the other geological logs data of tree wells located in Gachsaran field, wells number GS-A, GS-B and GS-C. The new technique by using the feed-forward artificial neural networks (ANN) with back-propagation learning rule can predict the fracture dip data of the third well using the data from the other 2 wells. The result obtained showed that the ANN model can simulate the relationship between fractures dips in these 3 wells which the multiple R of training and test sets for the ANN model is 0.95099 and 0.912197, respectively

    Performance evaluation of nanosilica derived from agro-waste as lost circulation agent in water-based mud

    Get PDF
    Seepage or loss of the mix-water from the drilling muds into the porous and permeable formations is a common problem during drilling operation. The drilling mud design requires a good knowledge of sealing integrity and all the factors influencing the mud to bridge through fractures or pore throat of exposed rocks. Loss circulation materials (LCMs) are commonly introduced into the drilling mud to prevent or minimize filtrate loss. This study investigates silica nanoparticle (SNP) derived from rice husk (RH) termed RH-SNP using the wet-milling method as an LCM in water-based mud (WBM). The impact of the RH-SNP in the enhancement of rheology and filtrate loss control properties of WBM was studied. Subsequently, the sealing integrity of the RH-SNP in a 1 mm and 2 mm simulated fracture for 7 min was determined using a stainless-steel slotted filter disk. The performance of the developed RH-SNP was compared with the widely applied nutshell. The synthesized RH-SNP at amount of 2.0 wt% significantly enhanced the yield point and plastic viscosity of the WBM by 75% and 386%, respectively, and minimized the fluid loss of the WBM by 47% at 80 °F. The enhancement is due to the particles ability to spread and interact efficiently with the WBM. With the use of 1 mm and 2 mm simulated fracture for 7 min, the mud loss volume of the base mud reduced by 50%, 66.7%, 86%, and 90% (for 1 mm) and 40%, 65.7%, 77.1%, and 80% (for 2 mm) with the inclusion of 0.5 wt%, 1.0 wt%, 1.5 wt%, and 2.0 wt% of RH-SNP, respectively. Overall, the results showed that RH-SNP enhanced the seal integrity of the drilling mud and was more resistant to deformation compared to the nutshell. The findings of this study can help for better understanding of the application of RH-SNP as a loss circulation agent owing to its superior ability to seal fractured formation compared with the often used nutshell

    Oil extracts from fresh and dried Iban ginger

    Get PDF
    The present study aims to investigate the chemical properties of a new ginger species called Iban ginger. Oil extracts yield from both fresh and dried Iban ginger were compared via Soxhlet extraction production method. Subsequently, the chemical composition of the extracts was characterized and analysed. The associated chemical constituents and bioactive compounds were explored using gas chromatograph mass spectrometry (GCMS) and Fourier transformed infrared spectroscopy (FTIR) analysis for chemical constituents and plant active compound study. Results obtained show that yield of the oil increases with the increase of extraction time, freshness of ginger and type of solvent use. Although Iban ginger is known to be comparatively hotter in taste, the bioactive compounds properties are similar or in close agreement with other types of gingers reported in literature. Finally, acetone equivalent-extraction time of recycled ethanol is introduced herewith and found to be minimum around 2 h, as far as the present study is concerne

    Computer-assisted in coiled tubing perforation limitations: A case study from MA-X gas well

    Get PDF
    This paper seeks to determine the optimum operating conditions for deploying casing perforation guns based on CT to target depths in gas well MA-X by utilising Orpheus Model in CERBERUS. Orpheus assisted to solve the complicated scenarios and complex analysis involves mathematical modelling which is necessitates for computer processing powers. This study investigated four different Coiled Tubing (CT) intervention operational variables namely borehole assembly, CT grade outer diameter (OD), well fluid type and fractional reducer application included examined two scenarios which are running tools in (RIH) and pulling out from borehole (POOH). Only CT workstring with outer diameter between 1-1/4 inch and 2-7/8 inch is considered due to the wellbore completion minimum restriction. Constrained by economic and logistical reasons, only fresh water, 2% KCl, 15% HCl, sea water and diesel will be considered for the well bore fluid. Fractional reducer effects was simulated and analysed. Based on simulation results, the CT outer diameter 1-3/4 inch workstring optimized operation, the CT grade is QT1000 increased mechanical properties. A suitable well fluid is sea water with application of friction reducer improve CT perforation performances to achieve maximum target depth
    corecore