73 research outputs found

    Reversal of stress fibre formation by Nitric Oxide mediated RhoA inhibition leads to reduction in the height of preformed thrombi

    Get PDF
    Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation and inhibition. We hypothesised that Nitric oxide (NO), a platelet inhibitor, can modulate the actin cytoskeleton reversing platelet spreading, and therefore reduce the capability of thrombi to withstand a high shear environment. Our data demonstrates that GSNO, DEANONOate, and a PKG-activating cGMP analogue reversed stress fibre formation and increased actin nodule formation in adherent platelets. This effect is sGC dependent and independent of ADP and thromboxanes. Stress fibre formation is a RhoA dependent process and NO induced RhoA inhibition, however, it did not phosphorylate RhoA at ser188 in spread platelets. Interestingly NO and PGI2 synergise to reverse stress fibre formation at physiologically relevant concentrations. Analysis of high shear conditions indicated that platelets activated on fibrinogen, induced stress fibre formation, which was reversed by GSNO treatment. Furthermore, preformed thrombi on collagen post perfused with GSNO had a 30% reduction in thrombus height in comparison to the control. This study demonstrates that NO can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling excessive thrombosis

    Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina

    No full text
    Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide with several functions including vasodilation, the perception of painful stimuli, and inflammation. The CGRP receptor consists of two main components; calcitonin-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). While there is a growing recognition that CGRP plays a key role in migraine, the function of CGRP in the retina has not been fully established. This study aims to investigate the distribution of CGRP and its two receptor components in the rat retina, visually by immunohistochemistry and quantitatively using flow cytometry. CGRP immunoreactivity was found in the Müller cells while CLR/RAMP1 was located in the nerve fiber layer. Furthermore, since almost all RAMP1 immunoreactive cells co-express CLR, we propose that RAMP1 expression in the retina reflects functional CGRP receptors

    Polymer-Drug Anti-Thrombogenic and Hemocompatible Coatings as Surface Modifications

    No full text
    Since the 1960s, efforts have been made to develop new technologies to eliminate the risk of thrombosis in medical devices that come into contact with blood. Preventing thrombosis resulting from the contact of a medical device, such as an implant, with blood is a challenge due to the high mortality rate of patients and the high cost of medical care. To this end, various types of biomaterials coated with polymer-drug layers are being designed to reduce their thrombogenicity and improve their hemocompatibility. This review presents the latest developments in the use of polymer-drug systems to produce anti-thrombogenic surfaces in medical devices in contact with blood, such as stents, catheters, blood pumps, heart valves, artificial lungs, blood vessels, blood oxygenators, and various types of tubing (such as for hemodialysis) as well as microfluidic devices. This paper presents research directions and potential clinical applications, emphasizing the importance of continued progress and innovation in the field

    Changes in P2Y6 receptor-mediated vasoreactivity following focal and global ischemia

    No full text
    Ischemia, both in the form of focal thromboembolic stroke and following subarachnoid hemorrhage (SAH), causes upregulation of vasoconstrictive receptor systems within the cerebral vasculature. Descriptions regarding changes in purinergic signaling following ischemia are lacking, especially when the importance of purinergic signaling in regulating vascular tone is taken into consideration. This prompted us to evaluate changes in P2Y6-mediated vasomotor reactivity in two different stroke models in rat. We used wire myography to measure changes in cerebral vasoreactivity to the P2Y6 agonist UDP-β-S following either experimental SAH or transient middle cerebral artery occlusion. Changes in receptor localization or receptor expression were evaluated using immunohistochemistry and quantitative flow cytometry. Transient middle cerebral artery occlusion caused an increase in Emax when compared to sham (233.6 [206.1–258.5]% vs. 161.1 [147.1–242.6]%, p = 0.0365). No such change was seen following SAH. Both stroke models were associated with increased levels of P2Y6 receptor expression in the vascular smooth muscle cells (90.94 [86.99–99.15]% and 93.79 [89.96–96.39]% vs. 80.31 [70.80–80.86]%, p = 0.021) and p = 0.039 respectively. There was no change in receptor localization in either of the stroke models. Based on these findings, we conclude that focal ischemic stroke increases vascular sensitivity to UDP-β-S by upregulating P2Y6 receptors on vascular smooth muscle cells while experimental SAH did not induce changes in vasoreactivity in spite of increased P2Y6 receptor expression

    A novel multicolor flow-cytometry application for quantitative detection of receptors on vascular smooth muscle cells

    Get PDF
    There is a need to develop new techniques for quantitative measurement of receptors expression on particular vasculature cells types. Here, we describe and demonstrate a novel method to measure quantitatively and simultaneously the expression of endothelin B receptor (ETB) on vascular smooth muscle cells (VSMC). We isolated cells from male rat tissues such as: brain pial, brain intraparenchymal and retina vessels. To analyze solid tissues, a single-cell suspension was prepared by a combined mechanic and enzymatic process. The cells were stained with Fixable Viability Dye, followed by fixation, permeabilization and antibodies staining. The expression of ETB receptors on VSMC was measured by flow-cytometry and visualized by fluorescence microscopy. We obtained a high percentage of viable cells 87.6% ± 1.5% pial; 84.6% ± 4.3% parenchymal and 90.6% ± 4% retina after isolation of single cells. We performed a quantitative measurement of ETB receptor expression on VSMC and we identified two subpopulations of VSMC based on their expression of smooth muscle cells marker SM22α. The results obtained from pial vessels are statistically significant (38.4% ± 4% vs 9.8% ± 3.32%) between the two subpopulations of VSMC. The results obtained from intraparenchymal and retina vessels were not statistically significant. By specific gating on two subpopulations, we were able to quantify the expression of ETB receptors. The two subpopulation expressed the same level of ETB receptor (p = 0.45; p = 0.3; p = 0.42) in pial, parenchymal and retina vessels, respectively. We applied our method to the animals after induction of subarachnoid hemorrhage (SAH). There was statistically significant expression of ETB receptor (p = 0.02) on VSMC between sham 61.4% ± 4% and SAH 77.4% ± 4% rats pial vessels. The presented technique is able to quantitatively and selectively measure the level of protein expression on VSMC. The entire technique is optimized for rat tissue; however the protocol can also be adapted for other species

    Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration.

    Get PDF
    Platelets play an important role in thrombosis and in neo-vascularisation as they release and produce factors that both promote and suppress angiogenesis. Amongst these factors is the angiogenesis inhibitor angiostatin, which is released during thrombus formation. The impact of anti-thrombotic agents and the kinetics of platelet angiostatin release are unknown. Hence, our objectives were to characterize platelet angiostatin release temporally and pharmacologically and to determine how angiostatin release influences endothelial cell migration, an early stage of angiogenesis. We hypothesized anti-platelet agents would suppress angiostatin release but not generation by platelets. Human platelets were aggregated and temporal angiostatin release was compared to vascular endothelial growth factor (VEGF). Immuno-gold electron microscopy and immunofluorescence microscopy identified α-granules as storage organelles of platelet angiostatin. Acetylsalicylic acid, MRS2395, GPIIb/IIIa blocking peptide, and aprotinin were used to characterize platelet angiostatin release and generation. An endothelial cell migration assay was performed under hypoxic conditions to determine the effects of pharmacological platelet and angiostatin inhibition. Compared to VEGF, angiostatin generation and release from α-granules occurred later temporally during platelet aggregation. Consequently, collagen-activated platelet releasates stimulated endothelial cell migration more potently than maximally-aggregated platelets. Platelet inhibitors prostacyclin, S-nitroso-glutathione, acetylsalicylic acid, and GPIIb/IIIa blocking peptide, but not a P2Y12 inhibitor, suppressed angiostatin release but not generation. Suppression of angiostatin generation in the presence of acetylsalicylic acid enhanced platelet-stimulated endothelial migration. Hence, the temporal and pharmacological modulation of platelet angiostatin release may have significant consequences for neo-vascularization following thrombus formation

    STAT3 but Not HIF-1α Is Important in Mediating Hypoxia-Induced Chemoresistance in MDA-MB-231, a Triple Negative Breast Cancer Cell Line

    No full text
    Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed to better understand the mechanism underlying HICR in a triple negative breast cancer cell line, MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the sensitivity of MDA-MB-231 cells to cisplatin and their stem-like features was evaluated and the role of HIF-1α in both phenomena was assessed. Our results showed that hypoxia significantly increased MDA-MB-231 resistance to cisplatin. Correlating with this, intracellular uptake of cisplatin was significantly reduced under hypoxia. Furthermore, the stem-like features of MDA-MB-231 cells increased as evidenced by the significant increases in the expression of ATP-binding cassette (ABC) drug transporters, the proportion of CD44+/CD24− cells, clonogenic survival and cisplatin chemoresistance. Under hypoxia, both the protein level and DNA binding of HIF-1α was dramatically increased. Surprisingly, siRNA knockdown of HIF-1α did not result in an appreciable change to HICR. Instead, signal transducer and activator of transcription 3 (STAT3) activation was found to be important. STAT3 activation may confer HICR by upregulating ABC transporters, particularly ABCC2 and ABCC6. This study has demonstrated that, in MDA-MB-231 cells, STAT3 rather than HIF-1α is important in mediating HICR to cisplatin
    • …
    corecore