52 research outputs found

    Climate change and its effect on agriculture, water resources and human health sectors in Poland

    Get PDF
    Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961–1990 and 2061–2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes – droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being: –2.175 t/ha for potatoes and –0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an effect of both increase in the number of seniors (over twofold) and the number of senior-discomfort days (nearly fourfold)

    A new upper bound for the cross number of finite Abelian groups

    Full text link
    In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite Abelian groups. Given a finite Abelian group, this upper bound appears to depend only on the rank and on the number of distinct prime divisors of the exponent. The main theorem of this paper allows us, among other consequences, to prove that a classical conjecture concerning the cross and little cross numbers of finite Abelian groups holds asymptotically in at least two different directions.Comment: 21 pages, to appear in Israel Journal of Mathematic

    Up-scaling of impact dependent loss distributions: A hybrid convolution approach for flood risk in Europe

    No full text
    This paper introduces a new method to up-scale dependent loss distributions from natural hazards to higher spatial levels, explicitly incorporating their dependency structure over the aggregation process. The method is applied for flood risk in Europe. Based on this "hybrid convolution" approach, flood loss distributions for nearly all European countries are calculated and presented. Such risk-based estimates of extreme event losses are useful for determining suitable risk management strategies on various spatial levels for different risk bearers. The method is not only applicable for natural disaster risk but can be extended for other cases as well, i.e., where comonotonic risks have to be "summed up" without loss of risk information

    River flood risk and adaptation in Europe - Assessment of the present status

    No full text
    Flood disasters have had a devastating effect worldwide over the past century, both in terms of human suffering and material losses. The study of these events and development of more effective adaptation and mitigation policies has become a priority, both in Europe and other parts of the globe. This paper detects and presents the spatial distribution of river flood risks in Europe. The methodology we developed involves an assessment of three key risk components: exposure, vulnerability and hazard. A topography-based flood hazard map of Europe, identifying low-lying areas adjacent to rivers, is presented and used to identify risk, together with land-use data and damage-stage relationship for different land uses. The study covers river flood risk for the entire European continent. This methodology can be used to determine the level of future risk, using the estimations on Hazard, Exposure and Vulnerability from specific climate and economic development modes. Annual average flood damage is estimated for European regions, in absolute monetary terms and in % of regional Gross Domestic Product (GDP). The results highlight regions where the threat to the economy from river flood hazard is of major concern
    • 

    corecore