15 research outputs found

    Traffic Engineering Approach to Virtual-link Provisioning in Software-defined ISP Networks

    Get PDF
    In this paper, we propose a new approach to virtual-link provisioning in ISP (Internet Service Provider) networks. The approach relies on Software Defined Networking (SDN) architecture based on OpenFlow that allows highly granular traffic splitting across multiple paths. The traffic control logic of SDN controller is divided into offline and online component. The online component handles dynamic arrivals of virtual-link requests in accordance with Service Level Agreements (SLAs) requirements. The offline component is responsible for periodic optimization of traffic distribution in the network. In this way, we tend to increase acceptance ratio for virtual-link requests and minimize degradation of best-effort traffic in a scalable manner. Our simulation results show that the proposed method for virtual-link provisioning outperforms solutions that rely on Constrained Shortest Path First (CSPF) and Equal Cost Multi-Path (ECMP) routing

    Extending the lifetime of wireless sensor network with partial SDN deployment

    No full text
    Energy efficiency is one of the key requirements in Wireless Sensor Networks (WSNs). In order to optimize energy usage at sensor nodes, this paper proposes a new network architecture that relies on concepts of Software Defined Networking (SDN). Since SDN is a relatively new technology, originally envisioned for wired networks, it cannot be expected to get immediately and completely adopted in WSN domain, regardless of potential benefits. For this reason, we consider incremental SDN deployment where SDN nodes coexist with traditional sensor nodes, and propose a new routing algorithm for SDN controller that prolongs the WSN lifetime even when a small percentage of SDN nodes is deployed

    GEMAS: Geochemical distribution of Mg in agricultural soil of Europe

    No full text
    Agricultural soil (Ap-horizon, 0\u201320 cm) samples were collected from 33 European countries as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project. The Mg data derived from total concentrations (XRF) and two acid digestion methods, aqua regia (AR) and Mobile Metal Ion (MMI\uae), were used to provide an overview of its spatial distribution in soil at the continental-scale. Magnesium is one of the most abundant elements in the Earth's crust and essential nutrient for plants and animals and its presence in soil is, therefore, important for soil quality evaluation. In this study, the geochemical behaviour of Mg in European agricultural soil was investigated in relation to a variety of soil parent materials, climatic zones, and landscapes. The chemical composition of soil reflects mostly the primary mineralogy of the source bedrock, and the superimposed effects of pre- and post-depositional chemical weathering, controlled by element mobility and formation of secondary phases such as clays. Low Mg concentrations in agricultural soil occur in regions with quartz-rich glacial sediments (Poland, Baltic States, N. Germany), and in soil developed on quartz-rich sandstone parent materials (e.g., central Sweden). High Mg concentrations occur in soil developed over mafic lithologies such as ophiolite belts and in carbonate-rich regions, including karst areas. The maximum extent of the last glaciation is well defined by a Mg concentration break, which is marked by low Mg concentrations in Fennoscandia and north-central Europe, and high Mg concentrations in Mediterranean region. Lithology of parent materials seems to play a key role in the Mg nutritional status of agricultural soil at the European scale. Influence from agricultural practice and use of fertilisers appears to be subordinate. Comparison of the continental-scale spatial distribution of Mg in agricultural soil by using the results from three analytical methods (XRF, AR and MMI\uae) provides complementary information about Mg mobility and its residence time in soil. Thus, allowing evaluation of soil weathering grade and impact of land use exploitation

    GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping

    No full text
    The demand for ‘high-tech’ element resources (e.g., rare earth elements, lithium, platinum group elements) has increased with their continued consumption in developed countries and the emergence of developing economies. To provide a sound knowledge base for future generations, it is necessary to identify the spatial distribution of critical elements at a broad-scale, and to delineate areas for follow-up surveys. Subsequently, this knowledge can be used to study possible environmental consequences of the increased use of these resources. In this paper, three critical industrial elements (Sb, W, Li) from low-sampling density geochemical mapping at the continental-scale are presented. The geochemical distribution and spatial patterns have been obtained from agricultural soil samples (Ap-horizon, 0–20 cm; N = 2108 samples) collected at a density of 1 site per 2500 km2 and analysed by ICP-MS after a hot aqua regia digestion as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project in 33 European countries. Most of the geochemical maps show exclusively natural background element concentrations with minor, or without, anthropogenic influence. The maximum extent of the last glaciation is marked as a discrete element concentration break, and a distinct difference occurs in element concentration levels between the soil of northern and southern Europe, most likely an effect of soil genesis, age and weathering. The Sb, W and Li concentrations in soil provide a general overview of element spatial distribution in relation to complexity of the underlying bedrock and element mobility in the surface environment at the continental-scale. The chemical composition of agricultural soil represents largely the primary mineralogy of the source bedrock, the effects of pre- and post-depositional chemical weathering, formation of secondary products, such as clays, and element mobility, either by leaching or mineral sorting. Observed geochemical patterns of Li, W and Sb can be often linked with known mineralisation as recorded in the ProMine Mineral Database, where elements in question occur either as main or secondary resources. Anthropogenic impact has only been identified locally, predominantly in the vicinity of large urban agglomerations. Unexplained high element concentrations may potentially indicate new sources for high-tech elements and should be investigated at a more detailed scale

    GEMAS: Indium in agricultural and grazing land soil of Europe - Its source and geochemical distribution patterns

    No full text
    Indium is a very rare element, which is usually not reported in geochemical data sets. It is classified as a critical metal, with important applications in the electronics industry, especially in the production of solar panels and liquid-crystal displays (LCDs).Over 4000 samples of agricultural and grazing land soil have been collected for the "Geochemical Mapping of Agricultural and Grazing Land Soil of Europe" (GEMAS) project, carried out by the EuroGeoSurveys Geochemistry Expert Group. Indium concentrations in soil have been analysed using aqua regia extraction followed by ICP-MS. Median values of In for both land use types are nearly identical, 0.0176. mg/kg for agricultural soil and 0.0177. mg/kg for grazing land soil.The spatial distribution patterns of In in European soil are mainly controlled by geology and the presence of Zn and Sn mineralisation. The preference of In to accumulate in the fine-grained fraction of soil with high clay content dominates the major anomaly patterns on the geochemical maps. In the Mediterranean region, secondary In enrichment is visible in karst areas. A notable feature of the In spatial distribution is the large difference between northern and southern Europe, with median values of 0.012 and 0.021. mg. In/kg, respectively, suggesting that, in addition to lithology, weathering and climate are important factors influencing In soil enrichment over time. \ua9 2015 Elsevier B.V

    Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation

    No full text
    Over 4000 soil samples were collected for the “Geochemical Mapping of Agricultural and Grazing Land Soil of Europe” (GEMAS) project carried out by the EuroGeoSurveys Geochemistry Expert Group. Cadmium concentrations are reported for the <2 mm fraction of soil samples from regularly ploughed fields (agricultural soil, Ap, 0–20 cm, N = 2218) and grazing land soil (Gr, 0–10 cm, N = 2127). The samples were collected in 33 European countries, covering 5.6 million km2 at a sample density of 1 sample each per 2500 km2 and were analysed in an aqua regia extraction followed by an ICP-MS finish. The median Cd value is 0.181 mg/kg for the Ap and 0.202 mg/kg for the Gr soil samples. The data allow a directly comparable country-specific regional exposure and risk characterisation for all EU countries covered. Direct risks of Cd for terrestrial organisms are only predicted for a few isolated sample sites: 2.3% of the Ap and 4.5% of the Gr sites, respectively

    GEMAS: adaptation of weathering indices for European agricultural soil derived from carbonate parent materials

    No full text
    Carbonate rocks are very soluble and export elements in dissolved form, and precipitation of secondary phases can occur on a large scale. They leave a strong chemical signature in soil that can be quantified and classified by geochemical indices, and which is useful for evaluating chemical weathering trends (e.g. the Chemical Index of Alteration (CIA) or the Mafic Index of Alteration (MIA)). Due to contrasting chemical compositions and high Ca content, a special adaptation of classical weathering indices is necessary to interpret weathering trends in carbonate-derived soil. In fact, this adaptation seems to be a good tool for distinguishing weathering grades of source-rock types at the continental scale, and allows a more robust interpretation of soil parent-material weathering grade and its impact on the current chemical composition of soil. An increasing degree of weathering results in Al enrichment and Mg loss in addition to Fe loss and Si enrichment, leaching of mobile cations such as Ca and Na, and precipitation of Fe-oxides and hydroxides. The relation between soil weathering status and its spatial distribution in Europe provides important information about the role played by climate and terrain. The geographical distribution of soil chemistry contributes to a better understanding of soil nutritional status, element enrichment, degradation mechanisms, desertification, soil erosion and contamination
    corecore