236 research outputs found

    The role of genetics and epigenetics in the pathogenesis of systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a complex autoimmune disease of unclear aetiology. A multitude of genetic studies, ranging from candidate-gene studies to genome-wide association studies, have identified a large number of genetic susceptibility factors for SSc and its clinical phenotypes, but the contribution of these factors to disease susceptibility is only modest. However, in an endeavour to explore how the environment might affect genetic susceptibility, epigenetic research into SSc is rapidly expanding. Orchestrated by environmental factors, epigenetic modifications can drive genetically predisposed individuals to develop autoimmunity, and are thought to represent the crossroads between the environment and genetics in SSc. Therefore, in addition to providing a comprehensive description of the current understanding of genetic susceptibility underlying SSc, this Review describes the involvement of epigenetic phenomena, including DNA methylation patterns, histone modifications and microRNAs, in SSc

    First-line csDMARD monotherapy drug retention in psoriatic arthritis: methotrexate outperforms sulfasalazine

    Get PDF
    Objectives: Conventional synthetic DMARDs (csDMARDs) are the first-line treatment for PsA, but there is conflicting data regarding their efficacy and scarce reports describing the duration of use (drug retention) of csDMARD in this population. Their position in treatment recommendations is a matter of growing debate due to the availability of alternative treatment options with higher levels of evidence. We aimed to study drug retention and predictors for drug retention among PsA patients receiving first-line csDMARD monotherapy. Methods: Retrospective cohort study in DMARD-naïve adult PsA patients in whom a first csDMARD was prescribed as monotherapy primarily to treat PsA-related symptoms. The main outcome was time to failure of the csDMARD (i.e. stopping the csDMARD or adding another DMARD). Results: A total of 187 patients were included, who were mainly prescribed MTX (n = 163) or SSZ (n = 21). The pooled median drug retention time was 31.8 months (interquartile range 9.04-110). Drug retention was significantly higher in MTX (median 34.5 months; interquartile range 9.60-123) as compared with SSZ-treated patients (median 12.0 months; interquartile range 4.80-55.7) (P =0.016, log-rank test). In multivariable Cox regression, the use of MTX and older age were associated with increased retention. The main reasons for treatment failure were inefficacy (52%) and side effects (28%). Upon failure, MTX treated patients were more commonly, subsequently treated with a biologic DMARD compared with SSZ (P < 0.05). Conclusion: MTX outperforms SSZ as a first-line csDMARD in DMARD-naïve PsA patients with respect to monotherapy drug retention in daily clinical practice

    CXCL4 suppresses tolerogenic immune signature of monocyte-derived dendritic cells

    Get PDF
    RNA sequencing and DNA methylomic profiling were performed after differentiating monocytes for 6 days into moDCs with/without CXCL4 presence. We show that CXCL4 downregulates genes associated with tolerogenicity in DCs including C1Q. Expression profiles of C1Q genes were negatively correlated with their DNA methylation profiles and with immunogenic genes

    The Pronounced Th17 Profile in Systemic Sclerosis (SSc) Together with Intracellular Expression of TGFβ and IFNγ Distinguishes SSc Phenotypes

    Get PDF
    Contains fulltext : 81194.pdf (publisher's version ) (Open Access)BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease where controversy on Th1/Th2 balance dominates. We investigated whether the recently discovered Th17 pattern was present in SSc. METHODOLOGY AND PRINCIPAL FINDINGS: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 12) or diffuse cutaneous SSc (dcSSc, n = 24). A further arbitrary subdivision was made between early dcSSc (n = 11) and late dcSSc (n = 13) based upon the duration of disease. As a comparator group 14 healthy controls were studied. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, CD45Ro, CD45Ra, IL-23, GITR, CD69 and intracellular expression of IL-17, TGFbeta and IFNgamma using flow cytometry. Levels of IL-17, IL-6, IL-1alpha and IL-23 were measured using Bioplex assays. SSc patients had more and more activated CD4+ cells. In addition, CD4, CD45Ro and CD45Ra cells from all SSc patients highly expressed the IL23R, which was associated with a higher IL-17 expression as well. In contrast, IFNgamma and TGFbeta were selectively up regulated in SSc subsets. In line with these observation, circulating levels of IL-17 inducing cytokines IL-6, IL-23 and IL-1alpha were increased in all or subsets of SSc patients. CONCLUSION AND SIGNIFICANCE: The combination of IL-17, IFNgamma and TGFbeta levels in CD45Ro and CD45Ra cells from SSc patients is useful to distinguish between lSSc, ldSSc or edSSc. Blocking Th17 inducing cytokines such as IL-6 and IL-23 may provide a useful tool to intervene in the progression of SSc

    Increased Frequency and Compromised Function of T Regulatory Cells in Systemic Sclerosis (SSc) Is Related to a Diminished CD69 and TGFβ Expression

    Get PDF
    Contains fulltext : 80239.pdf (publisher's version ) (Open Access)BACKGROUND: Regulatory T cells (Tregs) are essential in the control of tolerance. Evidence implicates Tregs in human autoimmune conditions. Here we investigated their role in systemic sclerosis (SSc). METHODS/PRINCIPAL FINDINGS: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 20) or diffuse cutaneous SSc (dcSSc, n = 48). Further subdivision was made between early dcSSc (n = 24) and late dcSSc (n = 24) based upon the duration of disease. 26 controls were studied for comparison. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, FoxP3, CD127, CD62L, GITR, CD69 using flow cytometry. T cell suppression assays were performed using sorted CD4CD25(high)CD127(-) and CD4CD25(low)CD127(high) and CD3(+) cells. Suppressive function was correlated with CD69 surface expression and TGFbeta secretion/expression. The frequency of CD4(+)CD25(+) and CD25(high)FoxP3(high)CD127(neg) T cells was highly increased in all SSc subgroups. Although the expression of CD25 and GITR was comparable between groups, expression of CD62L and CD69 was dramatically lower in SSc patients, which correlated with a diminished suppressive function. Co-incubation of Tregs from healthy donors with plasma from SSc patients fully abrogated suppressive activity. Activation of Tregs from healthy donors or SSc patients with PHA significantly up regulated CD69 expression that could be inhibited by SSc plasma. CONCLUSIONS/SIGNIFICANCE: These results indicate that soluble factors in SSc plasma inhibit Treg function specifically that is associated with altered Treg CD69 and TGFbeta expression. These data suggest that a defective Treg function may underlie the immune dysfunction in systemic sclerosis

    The Long Non-coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis

    Get PDF
    TLR4 activation initiates a signaling cascade leading to the production of type I IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have been identified. Dysregulation of this process, collectively known as the “Interferon (IFN) Response,” represents a common molecular basis in the development of autoimmune and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been described in several type I IFN-driven autoimmune diseases. In particular, both TLR activation and the upregulation of ISGs in peripheral blood mononuclear cells have been identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a connective tissue disease characterized by vascular abnormalities, immune activation, and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total of 46 SSc patients in different stages of their disease as compared to 18 healthy controls enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response (NRIR) was found significantly upregulated in vivo in SSc monocytes, strongly correlating with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis showed that NRIR-specific modules, identified in the two datasets, were enriched in “type I IFN” and “viral response” biological processes. Protein coding genes common to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen in silico-predicted NRIR target genes were experimentally validated in NRIR-silenced monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may account, at least in part, for the type I IFN signature present in SSc patients

    Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis

    Get PDF
    Objective: To predict response to anti–tumor necrosis factor (anti-TNF) prior to treatment in patients with rheumatoid arthritis (RA), and to comprehensively understand the mechanism of how different RA patients respond differently to anti-TNF treatment. Methods: Gene expression and/or DNA methylation profiling on peripheral blood mononuclear cells (PBMCs), monocytes, and CD4+ T cells obtained from 80 RA patients before they began either adalimumab (ADA) or etanercept (ETN) therapy was studied. After 6 months, treatment response was evaluated according to the European League Against Rheumatism criteria for disease response. Differential expression and methylation analyses were performed to identify the response-associated transcription and epigenetic signatures. Using these signatures, machine learning models were built by random forest algorithm to predict response prior to anti-TNF treatment, and were further validated by a follow-up study. Results: Transcription signatures in ADA and ETN responders were divergent in PBMCs, and this phenomenon was reproduced in monocytes and CD4+ T cells. The genes up-regulated in CD4+ T cells from ADA responders were enriched in the TNF signaling pathway, while very few pathways were differential in monocytes. Differentially methylated positions (DMPs) were strongly hypermethylated in responders to ETN but not to ADA. The machine learning models for the prediction of response to ADA and ETN using differential genes reached an overall accuracy of 85.9% and 79%, respectively. The models using DMPs reached an overall accuracy of 84.7% and 88% for ADA and ETN, respectively. A follow-up study validated the high performance of these models. Conclusion: Our findings indicate that machine learning models based on molecular signatures accurately predict response before ADA and ETN treatment, paving the path toward personalized anti-TNF treatment

    Activation-induced colocalisation of SCAMP5 with IFNα in human plasmacytoid dendritic cells

    Get PDF
    INTRODUCTION: Plasmacytoid dendritic cells (pDCs) are the main producers of type I interferon (IFN) in SLE. pDCs express high secretory carrier membrane protein 5 (SCAMP5). Recent work in transfected HEK cells connects SCAMP5 to the type I IFN secretory pathway. To further study the role of SCAMP5 in IFNα secretion by pDCs, we focused on the subcellular distribution of SCAMP5 in human pDCs freshly isolated from peripheral blood. METHODS: We measured SCAMP5 expression by flow cytometry in peripheral blood mononuclear cells of healthy subjects (n=8). Next, we assessed the colocalisation of SCAMP5 with IFNα in pDCs of healthy subjects (n=4) by evaluating bright detail similarity (BDS) scores using ImageStream technology. RESULTS: We confirm that SCAMP5 is highly expressed by pDCs derived from peripheral blood. In activated pDCs, we show that SCAMP5 colocalises with IFNα (mean BDS 2.0±0.1; BDS >2.0 in 44% of pDCs). CONCLUSION: SCAMP5 colocalises with IFNα in activated human pDCs, in support of a role of this trafficking protein in the secretion of type I IFN by pDCs

    Circulating small non-coding RNAs reflect IFN status and B cell hyperactivity in patients with primary Sj\uf6gren's syndrome

    Get PDF
    BackgroundConsidering the important role of miRNAs in the regulation of post-transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc) RNA levels in patients with primary Sjogren's syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features.MethodsSerum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjogren's Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group.ResultsTen sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters.ConclusionWe were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease
    corecore