97 research outputs found

    DECODING THE TRANSCRIPTIONAL LANDSCAPE OF TRIPLE-NEGATIVE BREAST CANCER USING NEXT GENERATION WHOLE TRANSCRIPTOME SEQUENCING

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Triple-negative breast cancers (TNBCs) are negative for the expression of estrogen (ER), progesterone (PR), and HER-2 receptors. TNBC accounts for 15% of all breast cancers and results in disproportionally higher mortality compared to ER & HER2-positive tumours. Moreover, there is a paucity of therapies for this subtype of breast cancer resulting primarily from an inadequate understanding of the transcriptional differences that differentiate TNBC from normal breast. To this end, we embarked on a comprehensive examination of the transcriptomes of TNBCs and normal breast tissues using next-generation whole transcriptome sequencing (RNA-Seq). By comparing RNA-seq data from these tissues, we report the presence of differentially expressed coding and non-coding genes, novel transcribed regions, and mutations not previously reported in breast cancer. From these data we have identified two major themes. First, BRCA1 mutations are well known to be associated with development of TNBC. From these data we have identified many genes that work in concert with BRCA1 that are dysregulated suggesting a role of BRCA1 associated genes with sporadic TNBC. In addition, we observe a mutational profile in genes also associated with BRCA1 and DNA repair that lend more evidence to its role. Second, we demonstrate that using microdissected normal epithelium maybe an optimal comparator when searching for novel therapeutic targets for TNBC. Previous studies have used other controls such as reduction mammoplasties, adjacent normal tissue, or other breast cancer subtypes, which may be sub-optimal and have lead to identifying ineffective therapeutic targets. Our data suggests that the comparison of microdissected ductal epithelium to TNBC can identify potential therapeutic targets that may lead to be better clinical efficacy. In summation, with these data, we provide a detailed transcriptional landscape of TNBC and normal breast that we believe will lead to a better understanding of this complex disease

    Exceptional Response with Immunotherapy in a Patient with Anaplastic Thyroid Cancer

    Get PDF
    Chemotherapy with or without radiation is the standard therapy for anaplastic thyroid cancer (ATC), although the response rate is not high and not durable. We describe a 62-year-old male who was diagnosed with ATC and initially treated with a thyroidectomy and lymph node dissection, followed by chemotherapy. Next generation sequencing was then performed to guide therapy and the tumor was found to have BRAF and programmed death-ligand 1 (PD-L1) positivity that was subsequently treated with vemurafenib and nivolumab. This led to substantial regression of tumor nodules. Genomic sequencing-based approaches to identify therapeutic targets has potential for improving outcomes. Currently, the patient continues to be in complete radiographic and clinical remission 20 months after beginning treatment with nivolumab. KEY POINTS: Programmed death-1 (PD-1)/PD-L1 immunotherapy has shown evidence of durable responses in certain malignancies such as melanoma, lung cancer, and renal cell carcinoma.PD-L1 positive tumors promote autoimmunity against the tumor; therefore, PD-1/PD-L1 blockade may be beneficial.Molecular profiling could possibly result in improved targeted therapy for certain malignancies

    Germline and Somatic DNA Damage Repair Gene Mutations and Overall Survival in Metastatic Pancreatic Adenocarcinoma Patients Treated with FOLFIRINOX

    Get PDF
    Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with lack of predictive biomarkers. We conducted a study to assess DNA damage repair (DDR) gene mutations as a predictive biomarker in PDAC patients treated with FOLFIRINOX. Experimental Design: Indiana University Simon Cancer Center pancreatic cancer database was used to identify patients with metastatic PDAC, treated with FOLFIRINOX and had tissue available for DNA sequencing. Baseline demographic, clinical, and pathologic information was gathered. DNA isolation and targeted sequencing was performed using the Ion AmpliSeq protocol. Overall survival (OS) analysis was conducted using Kaplan–Meier, logistic regression and Cox proportional hazard methods. Multivariate models were adjusted for age, gender, margin status, CA 19-9, adjuvant chemotherapy, tumor and nodal stage. Results: Overall, 36 patients were sequenced. DDR gene mutations were found in 12 patients. Mutations were seen in BRCA1 (N = 7), BRCA2 (N = 5), PALB2 (N = 3), MSH2 (N = 1), and FANCF (N = 1) of all the DDR genes sequenced. Median age was 65.5 years, 58% were male, 97.2% were Caucasian and 51.4% had any family history of cancer. The median OS was near significantly superior in those with DDR gene mutations present vs. absent [14 vs. 5 months; HR, 0.58; 95% confidence interval (CI), 0.29–1.14; log-rank P = 0.08]. Multivariate logistic (OR, 1.47; 95% CI, 1.04–2.06; P = 0.04) and Cox regression (HR, 0.37; 95% CI, 0.15–0.94; P = 0.04) showed presence of DDR gene mutations was associated with improved OS. Conclusions: In a single institution, retrospective study, we found that the presence of DDR gene mutations are associated with improved OS in PDAC patients treated with FOLFIRINOX

    Pancreatic Cyst Fluid Vascular Endothelial Growth Factor A and Carcinoembryonic Antigen: A Highly Accurate Test for the Diagnosis of Serous Cystic Neoplasm

    Get PDF
    Background Accurate differentiation of pancreatic cystic lesions is important for early detection and prevention of pancreatic cancer, as well as avoidance of unnecessary surgical intervention. Serous cystic neoplasms (SCNs) have no malignant potential, but can mimic the following premalignant mucinous cystic lesions: mucinous cystic neoplasm and intraductal papillary mucinous neoplasm (IPMN). We recently identified vascular endothelial growth factor (VEGF)-A as a novel pancreatic fluid biomarker for SCN. We hypothesize that combining cyst fluid CEA with VEGF-A will improve the diagnostic accuracy of VEGF-A. Methods Pancreatic cyst/duct fluid was collected from consenting patients undergoing surgical cyst resection with corresponding pathologic diagnoses. Pancreatic fluid VEGF-A and CEA levels were detected by ELISA. Results One hundred and forty-nine patients with pancreatic cystic lesions met inclusion criteria. Pathologic diagnoses included pseudocyst (n = 14), SCN (n = 26), mucinous cystic neoplasm (n = 40), low-/moderate-grade IPMN (n = 34), high-grade IPMN (n = 20), invasive IPMN (n = 10), and solid pseudopapillary neoplasm (n = 5). Vascular endothelial growth factor A was significantly elevated in SCN cyst fluid compared with all other diagnoses (p 5,000 pg/mL, VEGF-A alone has 100% sensitivity and 83.7% specificity to distinguish SCNs from other cystic lesions. With a threshold of ≤10 ng/mL, CEA alone identifies SCN with 95.5% sensitivity and 81.5% specificity. Sensitivity and specificity of the VEGF-A/CEA combination are 95.5% and 100%, respectively. The c-statistic increased from 0.98 to 0.99 in the receiver operating characteristic analysis when CEA was added to VEGF-A alone. Conclusions Although VEGF-A alone is a highly accurate test for SCN, the combination of VEGF-A with CEA approaches the gold standard for pathologic diagnosis, importantly avoiding false positives. Patients with a positive test indicating benign SCN can be spared a high-risk surgical pancreatic resection

    Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy

    Get PDF
    Next-generation sequencing to detect circulating tumor DNA is a minimally invasive method for tumor genotyping and monitoring therapeutic response. The majority of studies have focused on detecting circulating tumor DNA from patients with metastatic disease. Herein, we tested whether circulating tumor DNA could be used as a biomarker to predict relapse in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. In this study, we analyzed samples from 38 early-stage triple-negative breast cancer patients with matched tumor, blood, and plasma. Extracted DNA underwent library preparation and amplification using the Oncomine Research Panel consisting of 134 cancer genes, followed by high-coverage sequencing and bioinformatics. We detected high-quality somatic mutations from primary tumors in 33 of 38 patients. TP53 mutations were the most prevalent (82%) followed by PIK3CA (16%). Of the 33 patients who had a mutation identified in their primary tumor, we were able to detect circulating tumor DNA mutations in the plasma of four patients (three TP53 mutations, one AKT1 mutation, one CDKN2A mutation). All four patients had recurrence of their disease (100% specificity), but sensitivity was limited to detecting only 4 of 13 patients who clinically relapsed (31% sensitivity). Notably, all four patients had a rapid recurrence (0.3, 4.0, 5.3, and 8.9 months). Patients with detectable circulating tumor DNA had an inferior disease free survival (p < 0.0001; median disease-free survival: 4.6 mos. vs. not reached; hazard ratio = 12.6, 95% confidence interval: 3.06-52.2). Our study shows that next-generation circulating tumor DNA sequencing of triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy can predict recurrence with high specificity, but moderate sensitivity. For those patients where circulating tumor DNA is detected, recurrence is rapid

    Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer

    Get PDF
    Triple negative breast cancer accounts for 15-20% of all breast cancer cases, but despite its lower incidence, contributes to a disproportionately higher rate of mortality. As there are currently no Food and Drug Administration-approved targeted agents for triple negative breast cancer, we embarked on a genomic-guided effort to identify novel targeted modalities. Analyses by our group and The Cancer Genome Atlas have identified activation of the PI3K-pathway in the majority of triple negative breast cancers. As single agent therapy is commonly subject to resistance, we investigated the use of combination therapy against compensatory pathways. Herein, we demonstrate that pan-PI3K inhibition in triple negative breast cancers results in marked activation of the Wnt-pathway. Using the combination of two inhibitors currently in clinical trial as single agents, buparlisib(pan-PI3K) and WNT974(WNT-pathway), we demonstrate significant in vitro and in vivo synergy against triple negative breast cancer cell lines and xenografts. Taken together, these observations provide a strong rationale for testing dual targeting of the PI3K and WNT-pathways in clinical trials

    ParsVNN: parsimony visible neural networks for uncovering cancer-specific and drug-sensitive genes and pathways

    Get PDF
    Prediction of cancer-specific drug responses as well as identification of the corresponding drug-sensitive genes and pathways remains a major biological and clinical challenge. Deep learning models hold immense promise for better drug response predictions, but most of them cannot provide biological and clinical interpretability. Visible neural network (VNN) models have emerged to solve the problem by giving neurons biological meanings and directly casting biological networks into the models. However, the biological networks used in VNNs are often redundant and contain components that are irrelevant to the downstream predictions. Therefore, the VNNs using these redundant biological networks are overparameterized, which significantly limits VNNs' predictive and explanatory power. To overcome the problem, we treat the edges and nodes in biological networks used in VNNs as features and develop a sparse learning framework ParsVNN to learn parsimony VNNs with only edges and nodes that contribute the most to the prediction task. We applied ParsVNN to build cancer-specific VNN models to predict drug response for five different cancer types. We demonstrated that the parsimony VNNs built by ParsVNN are superior to other state-of-the-art methods in terms of prediction performance and identification of cancer driver genes. Furthermore, we found that the pathways selected by ParsVNN have great potential to predict clinical outcomes as well as recommend synergistic drug combinations

    Identification of germline cancer predisposition variants during clinical ctDNA testing

    Get PDF
    Next-generation sequencing of circulating tumor DNA (ctDNA) is a non-invasive method to guide therapy selection for cancer patients. ctDNA variant allele frequency (VAF) is commonly reported and may aid in discerning whether a variant is germline or somatic. We report on the fidelity of VAF in ctDNA as a predictor for germline variant carriage. Two patient cohorts were studied. Cohort 1 included patients with known germline variants. Cohort 2 included patients with any variant detected by the ctDNA assay with VAF of 40–60%. In cohort 1, 36 of 91 (40%) known germline variants were identified through ctDNA analysis with a VAF of 39–87.6%. In cohort 2, 111 of 160 (69%) variants identified by ctDNA analysis with a VAF between 40 and 60% were found to be germline. Therefore, variants with a VAF between 40 and 60% should induce suspicion for germline status but should not be used as a replacement for germline testing

    Impact of Genetic Ancestry on Outcomes in ECOG-ACRIN-E5103

    Get PDF
    Purpose: Racial disparity in breast cancer outcomes exists between African American and Caucasian women in the United States. We have evaluated the impact of genetically determined ancestry on disparity in efficacy and therapy-induced toxicity for breast cancer patients in the context of a randomized, phase III adjuvant trial. Patients and Methods: This study compared outcomes between 386 patients of African ancestry (AA) and 2473 patients of European ancestry (EA) in a randomized, phase III breast cancer trial; ECOG-ACRIN-E5103. The primary efficacy endpoint, invasive disease free survival (DFS) and clinically significant toxicities were compared including: anthracycline-induced congestive heart failure (CHF), taxane-induced peripheral neuropathy (TIPN), and bevacizumab-induced hypertension. Results: Overall, AAs had significantly inferior DFS (p=0.002; HR=1.5) compared with EAs. This was significant in the estrogen receptor-positive subgroup (p=0.03); with a similar, non-significant trend for those who had triple negative breast cancer (TNBC; p=0.12). AAs also had significantly more grade 3-4 TIPN (OR=2.9; p=2.4 ×10-11) and grade 3-4 bevacizumab-induced hypertension (OR=1.6; p=0.02), with a trend for more CHF (OR=1.8; p=0.08). AAs had significantly more dose reductions for paclitaxel (p=6.6 ×10-6). In AAs, dose reductions in paclitaxel had a significant negative impact on DFS (p=0.03); whereas in EAs, dose reductions did not impact outcome (p=0.35). Conclusion: AAs had inferior DFS with more clinically important toxicities in ECOG-ACRIN-E5103. The altered risk to benefit ratio for adjuvant breast cancer chemotherapy should lead to additional research with the focus centered on the impact of genetic ancestry on both efficacy and toxicity. Strategies to minimize dose reductions for paclitaxel, especially due to TIPN, are warranted for this population

    Charcot-Marie-Tooth gene, SBF2, associated with taxaneinduced peripheral neuropathy in African Americans

    Get PDF
    PURPOSE: Taxane-induced peripheral neuropathy (TIPN) is one of the most important survivorship issues for cancer patients. African Americans (AA) have previously been shown to have an increased risk for this toxicity. Germline predictive biomarkers were evaluated to help identify a priori which patients might be at extraordinarily high risk for this toxicity. EXPERIMENTAL DESIGN: Whole exome sequencing was performed using germline DNA from 213 AA patients who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Cases were defined as those with either grade 3-4 (n=64) or grade 2-4 (n=151) TIPN and were compared to controls (n=62) that were not reported to have experienced TIPN. We retained for analysis rare variants with a minor allele frequency <3% and which were predicted to be deleterious by protein prediction programs. A gene-based, case-control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of TIPN. RESULTS: Five genes had a p-value < 10-4 for grade 3-4 TIPN analysis and three genes had a p-value < 10-4 for the grade 2-4 TIPN analysis. For the grade 3-4 TIPN analysis, SET binding factor 2 (SBF2) was significantly associated with TIPN (p-value=4.35 x10-6). Five variants were predicted to be deleterious in SBF2. Inherited mutations in SBF2 have previously been associated with autosomal recessive, Type 4B2 Charcot-Marie-Tooth (CMT) disease. CONCLUSION: Rare variants in SBF2, a CMT gene, predict an increased risk of TIPN in AA patients receiving paclitaxel
    • …
    corecore