
 

 

 

DECODING THE TRANSCRIPTIONAL LANDSCAPE OF TRIPLE-NEGATIVE 

BREAST CANCER USING NEXT GENERATION WHOLE TRANSCRIPTOME 

SEQUENCING 

 

 

 

 

Milan Radovich 

 

 

 

 

 

 

Submitted to the faculty of the University Graduate School 
in partial fulfillment of the requirements  

for the degree 
Doctor of Philosophy 

in the Department of Medical and Molecular Genetics 
Indiana University 

 
August 2011 

 

 

 



ii 
 

Accepted by the Faculty of Indiana University, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

 

__ _____________________________ 

     Bryan P. Schneider, MD, Chair 

 

       

     David A. Flockhart, MD, PhD 

Doctoral Committee 

       

      Mircea Ivan, MD, PhD 

 June 15, 2011 

            

      Brittney-Shea Herbert, PhD 

 

       

      Brenda R. Grimes, PhD 

 

       

      Harikrishna Nakshatri, PhD 

 



iii 
 

ACKNOWLEDGEMENTS 

 

 As always, the success of our endeavors are built upon the support and love of 

so many people who help make life possible. Through my graduate career, I have 

undeservedly received an abundance of encouragement, support, and resources from 

so many which has allowed me to be where I am today. 

To my mentor Dr. Bryan Schneider, we have been together since the lab first 

started, and what an amazing time it has been! Through victories and failures, and time 

of joy and sorrow, you have always been there. I truly appreciate your friendship and 

mentorship through the years. Your persistence and support is what has allowed me to 

be the translational scientist I am today. Thank you for believing in me and for giving me 

the opportunity to pursue my scientific aspirations. I would not be graduating if it wasn’t 

for you, I will forever be indebted. 

To my labmates, Nawal Kassem, Brad Hancock, and Lateef Aregbe, I couldn’t 

have done this without you guys. Thank you for enduring the many days of my 

frustration when things just didn’t seem to work. Also, thank you for always being there, 

whether it was my talks or presentations or just needing someone to chat with, your 

presence was also so appreciated. Thank you for always making me laugh and always 

letting me know that I was loved by you all. The memories, I will never forget. Whether it 

was our trips to Washington, D.C., Denver, San Antonio, or Orlando, or just the many 

times we chatted in lab or at lunch, it is the camaraderie that made coming to lab 

everyday a joy.  

To my collaborators Drs. Susan Clare, George Sledge, and Mircea Ivan, and also 

to Connie Rufenbarger, my project would have not been possible with you. Thank you 

for taking the risk and investing in a young graduate student with a crazy idea. I can’t tell 

you how much it meant to me when you decided that I was worth your investment. 



iv 
 

Thank you for the countless conversations and always lending yet another good 

scientific idea. I will always be deeply indebted, and I only hope that I can return many 

fold what you gave to me. 

A special thanks goes to Dr. David A. Flockhart, I wouldn’t have been in graduate 

school if it wasn’t for you. I will forever be indebted to your kindness and generosity. I 

hope you will always know how appreciative I am of what you gave. 

To my committee, Drs. Bryan Schneider, David Flockhart, Mircea Ivan, Brittney-

Shea Herbert, Brenda Grimes, Harikrishna Nakshatri, thank you for your time and 

sacrifice in ensuring that I was becoming the best scientist that I can be. Thank you for 

your thoughtful suggestions and encouragement, and also thank you so much for 

making sure that I wasn’t going too overboard in my scientific ambitions. I am indebted 

to the time that you gave while never expecting anything in return. 

To my wife Betsy and my daughter Grace, thank you for being there for me 

through this entire time. I know it was so busy, and there wasn’t always a ton of time, but 

we always knew it would be done soon. Now that I will finally have a real job, we can 

finally go on that family vacation. To my mother Desanka, brother Alex, and my In-laws, 

Jim & Micki Geise thank you for your love and unwavering support. It has always been 

one of my greatest joys to know that I have made you proud. I hope that I will continue to 

do so.  

I know there are probably others that I am missing, but it goes without mentioning 

that so many were involved in making this project happen. To the volunteers and staff of 

the Susan G. Komen Tissue Bank who tirelessly collected and prepared the normal 

breast tissues, thank you for all you work and for the many many days of LCM! To the 

folks at Cofactor Genomics and Applied Biosystems whose technical expertise in next-

generation sequencing made so much of this work possible, thank you for being such 

great collaborators and for being great friends. To the Cancer Biology Training Program 



v 
 

and the Indiana CTSI who provided the funding that allowed me to be a successful 

student. Finally, to the Indiana University Simon Cancer Center, the Department of 

Medical & Molecular Genetics, and the Department of Surgery, thank you for providing 

the resources to make this project happen… and ensuring that the work still continues. 

 



vi 
 

ABSTRACT 

Milan Radovich 

 

DECODING THE TRANSCRIPTIONAL LANDSCAPE OF TRIPLE-NEGATIVE BREAST 

CANCER USING NEXT GENERATION WHOLE TRANSCRIPTOME SEQUENCING 

 

Triple-negative breast cancers (TNBCs) are negative for the expression of 

estrogen (ER), progesterone (PR), and HER-2 receptors. TNBC accounts for 15% of all 

breast cancers and results in disproportionally higher mortality compared to ER & HER2-

positive tumours. Moreover, there is a paucity of therapies for this subtype of breast 

cancer resulting primarily from an inadequate understanding of the transcriptional 

differences that differentiate TNBC from normal breast. To this end, we embarked on a 

comprehensive examination of the transcriptomes of TNBCs and normal breast tissues 

using next-generation whole transcriptome sequencing (RNA-Seq). By comparing RNA-

seq data from these tissues, we report the presence of differentially expressed coding 

and non-coding genes, novel transcribed regions, and mutations not previously reported 

in breast cancer. From these data we have identified two major themes. First, BRCA1 

mutations are well known to be associated with development of TNBC. From these data 

we have identified many genes that work in concert with BRCA1 that are dysregulated 

suggesting a role of BRCA1 associated genes with sporadic TNBC. In addition, we 

observe a mutational profile in genes also associated with BRCA1 and DNA repair that 

lend more evidence to its role. Second, we demonstrate that using microdissected 

normal epithelium maybe an optimal comparator when searching for novel therapeutic 

targets for TNBC. Previous studies have used other controls such as reduction 

mammoplasties, adjacent normal tissue, or other breast cancer subtypes, which may be 

sub-optimal and have lead to identifying ineffective therapeutic targets. Our data 
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suggests that the comparison of microdissected ductal epithelium to TNBC can identify 

potential therapeutic targets that may lead to be better clinical efficacy. In summation, 

with these data, we provide a detailed transcriptional landscape of TNBC and normal 

breast that we believe will lead to a better understanding of this complex disease. 

 

                            Bryan P. Schneider, MD, Chair 
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Chapter 1: Introduction 

 

1.1 Triple-Negative Breast Cancer 

 

1.1.1 Clinical characteristics and treatment of triple-negative breast cancer 

 Triple-negative breast cancer (TNBC) preferentially affects pre-menopausal 

women and women of African-American descent and has been plagued by the absence 

of targeted therapies leading to poor survival (Figure 1) [1-3]. TNBC accounts for 

approximately 15% of cases of breast cancer in the United States [1]. Despite its lower 

frequency, it contributes to both breast cancer morbidity and mortality in a 

disproportionately high fashion compared to estrogen/progesterone receptor (ER/PR) or 

HER-2 positive breast cancers [1]. Because these tumors do not over-express the 

estrogen, progesterone, or HER-2 receptors (triple-negative), these patients do not 

respond to targeted therapies that are successfully used in patients who over express 

these proteins. Agents such as tamoxifen, the aromatase inhibitors, and Herceptin have 

made major advances in improving survival for hormone-positive and HER-2 positive 

breast cancers, but successful targeted therapies have been absent in TNBC. Current 

standard of care for TNBC utilizes standard chemotherapeutic agents including: 

anthracyclines; cyclophosphamide; and taxanes in the adjuvant and neoadjuvant 

settings, and platinums and nucleoside analogs for patients with metastatic disease [4]. 

When using neoadjuvant chemotherapy in the curative setting, patients with TNBC are 

more likely to experience a pathological complete response (pCR) compared to those 

with ER positive disease; however, those patients who do not experience a pCR are far 

more likely to have a poor prognosis compared with other subtypes (Figure 2) [5, 6]. This 

variability in response implies that TNBCs are a heterogeneous group of diseases as  
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Figure 1. Kaplan-Meier curve of breast-specific survival in triple-negative and other 

breast cancers. This survival curve demonstrates the poorer prognosis of TNBC patients 

compared to other breast cancer subtypes. Adapted from Dent et al. [2]. 
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Figure 2. Overall survival as a function of response to neoadjuvant chemotherapy in 

TNBC. This figure demonstrates that TNBC patients who experience a pCR to 

neoadjuvant chemotherapy have a favorable prognosis that is nearly equivalent to other 

breast cancer patients who also experience a pCR. In contrast, TNBC patients who do 

not experience a pCR do considerably worse when compared to other breast cancer 

patients who do not experience a pCR. RD = Residual Disease. Adapted from Liedtke et 

al. [6]. 
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opposed to a single subtype and that novel targeted agents are needed to improve 

outcomes.  

 The poor prognosis of TNBC patients coupled with the aforementioned paucity of 

effective therapies has led to substantial efforts to identify targeted agents for this 

disease (see Table 1 for current trials of targeted agents in TNBC) [7]. Some of the initial 

targeted agents tested in TNBC have focused on inhibiting the Epidermal Growth Factor 

Receptor (EGFR) and the c-KIT receptor which were both identified to be overexpressed 

by immunohistochemistry compared to other breast cancers [8]. In the case of the 

EGFR, both a monoclonal antibody (Cetuximab) and a small molecule (Gefitinib) along 

with standard chemotherapy have failed to produce statistically significant increases in 

progression free survival (PFS) or overall survival (OS) in several clinical trials [9-12]. 

Similarly, clinical trials testing the small molecules Imatinib and Dasatanib (both potent 

inhibitors of c-KIT) in patients with TNBC have also been negative [13, 14]. 

 Anti-angiogenesis agents which target the growth and function of tumor 

vasculature, have also been implicated for use in treating TNBC. Results from the E2100 

trial which tested paclitaxel vs. paclitaxel with the addition of the anti-Vascular 

Endothelial Growth Factor (VEGF) monoclonal antibody bevacizumab, reported a near 

doubling in PFS for all patients including triple-negatives [15]. Similarly, a Phase II 

clinical trial of the receptor tyrosine kinase inhibitor Sunitinib, which targets the VEGF 

receptor-2 (VEGFR-2/KDR), reported a slightly higher response rate in triple negative 

patients [16]. While modest clinical benefit has been reported with the use of anti-

angiogenic agents in TNBC, an increase in overall survival has yet to be demonstrated. 

 More recently, the major focus of targeted therapy for TNBC has revolved around 

inhibiting DNA repair proteins, specifically the poly-ADP(ribose) polymerase (PARP). 

The premise of these trials revolve around the observations that sporadic and hereditary 

TNBC tumors are deficient in their DNA repair capacity, especially those mutated for the  
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Table 1. Ongoing clinical trials of targeted agents in TNBC. Current clinical trials of 

targeted agents are focusing particularly on PARP inhibitors, anti-angiogenics, kinase 

inhibitors, and mTOR inhibition. Adapted from Pal et al. [7].  
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DNA repair protein, BRCA1 (the role of BRCA1 mutations in TNBC is explained more in 

Section 1.1.3) [17, 18]. The majority of BRCA1 mutated tumors are triple-negative [19, 

20], and because of these mutations these tumor cells cannot repair DNA via the 

homologous recombination pathway [21]. Previous preclinical data demonstrated that 

the inhibition of PARP, which is involved in DNA repair via the base excision repair 

pathway, can induce apoptosis in BRCA1 mutated cells [22]. This cytotoxicity is induced 

by “synthetic lethality” in which a single mutation in a gene or pathway does not induce 

cell death on its own, but upon introduction of a second mutation or inhibition of a 

complementary gene or pathway leads to cell death (Figure 3). To this end, trials of 

PARP inhibitors in TNBC are ongoing. Some of the first efficacy data was derived from a 

single-agent Phase II trial using the drug Olaparib in BRCA1/2 mutation carriers [23]. 

The trial showed a dramatic response rate of 41%, suggesting that the synthetic lethal 

approach is efficacious. A previous Phase I trial of Olaparib demonstrated that the 

benefit of the drug was restricted primarily to BRCA carriers [24]. A randomized Phase II 

trial of a second PARP inhibitor, Iniparib, along with Gemcitabine and Carboplatin in 

metastatic TNBC reported a significant increase in response rate (32% to 52%) and an 

increase in median overall survival (7.7 months to 12.3 months) [25]. This trial in 

particular has generated substantial excitement as the patient population was not 

selected for BRCA1/2 mutants and most likely contains a large proportion of women with 

sporadic TNBC. These data suggest that benefit from PARP inhibition may not be 

restricted to tumors defective in homologous recombination, but that PARP inhibition 

may act in concert with other defective DNA repair pathways in TNBC.  

 While significant advances in treating TNBC with chemotherapy and targeted 

agents has been made in the last decade, TNBC still remains very lethal with no FDA 

approved targeted agents to date. Further, the determinants of why TNBC preferentially 

affects young women and those of African-American descent remain unknown.  
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Figure 3. Mechanism of synthetic lethality between BRCA deficiency and PARP 

inhibition. Single stranded breaks (SSBs) that occur during regular DNA damage is 

repaired by base excision repair (BER). PARP is a key player in BER whose inhibition 

leads to unrepaired SSBs. These SSBs during DNA replication can cause collapse of 

the replication fork or turn in to double stranded breaks (DSBs). DSBs are normally 

repaired by homologous recombination (HR) which requires BRCA1 and BRCA2. 

Without functional BRCA1/2, the DNA is not repaired or repaired via alternative error-

prone methods leading to gross genomic instability and eventually cell death. Redrawn 

and adapted from Banerjee et al. [26]. 
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1.1.2 Histological and molecular characterization of TNBC 

 Histologically, TNBC is typically characterized as infiltrating ductal carcinoma of 

no special type (IDC-NST) with high grade, pushing borders, high mitotic index, 

lymphocytic infiltrate, central necrotic zones, and occasional medullary features [27, 28]. 

While other less common histological types of breast cancer including: medullary, 

metaplastic, secretory, and adenoid cystic carcinomas are also triple-negative, the vast 

majority of TNBC are IDC-NST [27]. This common histological type of TNBC will be the 

focus of this dissertation.  

 In 2000, Perou et al. had demonstrated that breast cancers can be characterized 

by their molecular profile (known as the intrinsic subtypes) using gene expression 

microarrays (Figure 4) [29]. This work stratified breast tumors into Luminal A and B 

(mostly ER-positive), HER-2, normal-like, and basal-like (mostly TNBC). Further work 

also demonstrated that the majority of tumors mutated for BRCA1 are also basal-like 

[19]. More recently, a subset of the basal-like tumors referred to as “claudin-low” (or 

Basal B) has been identified by microarray analysis, and these tumors are thought to be 

enriched with characteristics of stem cells and epithelial-to-mesenchymal transition [30, 

31]. These tumors were coined “basal-like” to make reference of their origin from the 

basal/myoepithelial layer of the milk duct in the normal breast [29]. While the majority of 

sporadic TNBC and BRCA1 mutated tumors are basal-like, there is not a complete 

overlap and the terms should not be used synonymously (Figure 5). Indeed, 10-35% of 

TNBCs are not basal-like, where up to 45% of basal-like cancers are not triple-negative 

[32].  

To further complicate the picture, recent controversy has called into question 

whether basal-like tumors really derive from the basal/myoepithelial layer and should the 

term “basal” even be used [33]. In the original Perou et al. paper, subsets of tumors were  
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Figure 4. Representative example of breast tumors classified into intrinsic subtypes 

using unsupervised hierarchical clustering of gene expression array data. This clustering 

separates breast tumors into five subtypes which include Luminal A and B 

(predominately ER+), HER2, Basal-like (predominately TNBC), and Normal Breast-like. 

While there is some congruence of immunohistochemical profile with intrinsic subtype, a 

significant amount of non-overlap exists. For example, a significant proportion of basal-

like tumors are not triple-negative and vice versa. Figure adapted from Carey et al. [3]. 

 

 

 

 

 

 

 

 



10 
 

 

 

Figure 5. Shared characteristics of TNBC, Basal-like breast cancer (BLBC), and 

BRCA1-associated breast cancer. TNBC (by definition), BLBC, and BRCA1 cancers are 

predominately triple-negative. While they each have unique characteristics, they share 

substantial overlap in their gene expression, immunohistochemical profile, and DNA 

repair capacity. Redrawn and adapted from Carey et al. [32]. 
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designated as either luminal or basal-like based on expression of Cytokeratins 8/18 for 

luminal cells and Cytokeratins 5/6 for basal cells [29]. Data from others have supported 

the fact that Cytokeratins 5/6 are also expressed in luminal cells [34]. Further, in a partial 

retraction, Perou and colleagues concluded in a paper in 2006, that the basal-like 

subtype most likely does not originate from the basal/myoepithelial after failing to detect 

consistent expression of the myoepithelial markers: CD10; alpha-smooth muscle actin; 

and p63; but in confirmation did detect positive expression for Cytokeratins 5/6 & 8/18 in 

tumors classified as basal-like [35]. The definitive work that basal-like/TNBC tumors 

most likely derive from a luminal progenitor versus a basal/myoepithelial progenitor were 

confirmed in two elegant studies which both used BRCA1 mutants as a means to 

determine the cell of origin. In the first study, Lim et al. isolated tissue from BRCA1 

mutation carriers, and observed a factor-independent expansion of luminal progenitor 

cells followed by confirmation that breast tissue from BRCA mutants and basal-like 

tumors had gene expression profiles that were most similar to normal luminal 

progenitors [36]. In a second study, Molyneux et al. directly demonstrated that knocking 

out BRCA1 in luminal progenitor cells in mice produced tumors that histologically 

resemble BRCA1 and sporadic breast cancers whereas knockout of BRCA1 in 

basal/myoepithelial progenitor cells produced tumors that resemble rare 

adenomyoepitheliomas [37].  

In summation of histological & molecular profiling of TNBC, standard 

histochemical methods of staining for ER, PR, and HER-2, and determining grade and 

mitotic index are still the mainstay in guiding treatment. Recent work using a 50-gene 

classifier (known as the PAM50) qPCR assay to determine intrinsic subtypes confirmed 

that basal-like tumors are at a higher risk of relapse [38], though the use of intrinsic 

subtypes even for prognosis has failed to translate into clinical utility. Whether better 
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markers or therapeutic targets can be identified through gene expression profiling or by 

having a priori knowledge of the cell of origin of TNBC is still to be determined.  
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1.1.3 Hereditary and somatic mutation profile of TNBC 

 A significant amount of research has been published in relation to hereditary 

mutations and TNBC. In 1990, efforts let by Mary-Claire King using linkage analysis 

identified BRCA1 as a gene involved in hereditary breast cancer [39]. This gene was 

subsequently cloned by researchers at the University of Utah in 1994 and patented by 

Myriad Genetics [40]. BRCA1 has since become an archetypal example of inherited 

predisposition to cancer. BRCA1 is a tumor suppressor gene involved in DNA repair by 

homologous recombination, and loss-of-function mutations in BRCA1 leads to genomic 

instability [21]. The majority of BRCA1 mutated tumors are triple-negative and/or basal-

like [19, 20], but BRCA1 mutants account for only a small percentage of TNBC cases 

[41]. Carriers of BRCA1 mutations are at a 60-85% lifetime risk for developing breast 

cancer and at a 15-40% risk of ovarian cancer. Because BRCA1 mutant TNBCs cluster 

by gene expression array with sporadic TNBCs, it has been suggested that sporadic 

TNBCs may have hallmarks of “BRCAness” or gene expression/mutations in BRCA 

related genes or its pathway that results in a similar tumor phenotype [17, 19]. Indeed, 

previous data has demonstrated that sporadic TNBCs that have wild-type BRCA1 do 

exhibit decreased BRCA1 expression which can occur through promoter 

hypermethylation or overexpression of negative regulators of BRCA1 such as the ID4 

gene [42, 43]. More recent data in ovarian cancer has delineated a 60 gene set 

“BRCAness profile” that predicts responsiveness to platinum and PARP inhibitors for 

patients with BRCA-like sporadic ovarian cancer [44]. This data suggests that patients 

whose tumors are BRCA-like via a BRCAness gene expression profile may benefit from 

agents that damage DNA and inhibit DNA repair proteins, similar to the sensitivity seen 

in BRCA mutation carriers. While BRCA1 has dominated the landscape of germline 

susceptibility for TNBC, whether other germline variants exist (either in coding or non-

coding regions) that predispose patients to TNBC is still to be determined. 
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 In regards to somatic mutations in TNBC, the numbers of genes that are 

recurrently mutated are quite small. Data from the Vogelstein group demonstrated that 

the tumor suppressor p53 is by far the most recurrently mutated gene in TNBC [45]. 

Other data has also suggested the presence of Rb gene mutations in TNBC [46]. Very 

recent data presented by the Wellcome Trust Sanger Institute at the 2010 San Antonio 

Breast Cancer Symposium using next-generation exome sequencing in 11 TNBC cases, 

confirmed that p53 mutations dominate the mutational landscape of TNBC with Rb 

mutations coming in at a distant second (Figure 6) [47]. Also, very recent data presented 

at the 2011 American Association for Cancer Research Annual Meeting by researchers 

at the Translational Genomics Institute (TGen) using next-generation sequencing has 

identified recurrent somatic mutations in the ERBB4 gene in four African-American 

women with treatment resistant TNBC [48].  

 To further add to the somatic mutation landscape of TNBC, researchers at the 

Wellcome Trust Sanger Institute implemented low coverage next-generation DNA 

sequencing to examine genomic rearrangements in breast cancer [49]. This sequencing 

effort revealed that TNBCs have chaotic genomes compared to ER-positive or HER2-

positive breast cancers as evidenced by significantly more intra- and inter-chromosomal 

fusions and tandem duplications (Figure 7). Of important note, the Sanger group did not 

identify any recurrent gene fusions in its dataset, suggesting that TNBC is not driven by 

a single gene fusion as its primary driver. These data combined reflect how little is 

known about the mutational landscape of TNBC, and suggest that there is a possibility of 

other germline or somatic mutations implicated in TNBC tumorigenesis that have yet to 

be discovered. 
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Figure 6. Mutated cancer genes in TNBC identified by the Wellcome Trust Sanger 

Institute. Eleven primary TNBCs were sequenced using next-generation DNA exome 

sequencing. Genes known to be mutated in cancer are listed across the top. TP53 was 

mutated in 10 of 11 cancers where RB1 was mutated in 1 of 11. This data confirms 

previous findings that TP53 is the most recurrently mutated gene in TNBC with RB1 

coming in at a distant second. Figure redrawn and adapted from Futreal et al. 

presentation at the 2010 San Antonio Breast Cancer Symposium [47].  
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Figure 7. Low coverage next-generation whole genome sequencing of 24 breast 

cancers. (A) Circos plots of 6 representative samples. The outer ring is a circularized 

karyogram, the blue line represents copy number variation, green protrusions represent 

intrachromosomal fusions, and purple lines represent interchromosomal fusions. TNBC 

samples had considerably more inter- and intrachromosomal fusions compared to other 

subtypes. (B) Graphs of the number of genomic alterations present in each genome. 

TNBCs had more tandem duplications compared to other subtypes. Figure adapted from 

Stephens et al. [49]. 
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1.2 The normal breast in cancer research 

 

1.2.1 Overview of normal epithelium in the breast 

 The epithelial component of the human breast consists of a branching structure 

of ducts comprised of inner luminal epithelial cells which are surrounded by an outer 

layer of supporting myoepithelial cells (Figure 8) [50, 51]. The term “myoepithelial” is 

used as these cells have characteristics of both epithelium and of smooth muscle cells 

that can contract in order to move milk in response to oxytocin [33, 34, 51]. This layered 

structure of luminal and epithelial cells is maintained from the nipple through the 

lactiferous ducts to the lobules [34]. The ducts terminate at the terminal duct lobular unit 

(TDLU) which is the milk producing structure of the breast that consists of many acini 

(also known as alveoli) aggregated together to form lobules that are visually similar to a 

bunch of grapes (Figure 9) [52]. The TDLUs are dynamic structures that begin 

development during puberty [51, 53]; increases in number and size during the luteal 

phase of the menstrual cycle and pregnancy [53, 54]; and atrophies after menopause 

[53]. Of importance, it is in the TDLUs that the majority of breast cancers are formed 

[55]. Within the myoepithelial and luminal layers of the ducts and TDLUs is where breast 

stem cells reside (Figure 8) [50]. These stem cells are responsible for the growth of the 

ducts/TDLUs during the menstrual cycle and during pregnancy in preparation for 

lactation [53]. Many of these stem cells are highly pluripotent, and elegant experiments 

in mice have demonstrated that an entire functional mammary gland can be produced 

from a single mammary stem cell [56]. As mentioned in Section 1.1.2, in it has been 

experimentally determined that the source of BRCA1 induced TNBC is the luminal 

progenitor of the normal breast [36, 37]. Further work by others are elucidating the stem 

cell hierarchy of the normal breast and correlating this hierarchy to the origin of the 

various subtypes of breast cancer (Figure 10) [36]. While significant research is ongoing 
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Figure 8. Schematic of the normal cell types that comprise the human mammary duct. 

The human mammary duct consists of two layers, an inner luminal layer primarily 

responsible for carrying and secreting milk, and an outer myoepithelial layer primarily 

responsible for contraction during lactation. Within the layers are embedded stem and 

progenitor cells responsible for cell renewal and the growth of the ducts/TDLUs during 

the menstrual cycle and pregnancy. Figure adapted from Smalley et al. [50]. 
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Figure 9. Illustration of the normal breast and histology of the TDLU. The normal human 

breast comprises of a network of lobules and ducts primarily tasked with lactation during 

pregnancy. Milk produced in the TDLUs travels through the lactiferous ducts and is 

aspirated through the nipple. The TDLUs, along with their milk secretion function, are 

also thought to be the site of origin of breast cancers. Figure adapted from Smalley et al. 

[52]. 
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Figure 10. Schematic of the normal breast stem cell hierarchy. This diagram 

demonstrates the adult stem cell hierarchy of the normal breast with associated cell 

surface markers, and its similarity to the intrinsic subtypes of breast cancer based on 

gene expression profiling. This schematic points out that basal-like (TNBC) is derived 

from the normal luminal progenitor, while the more stem-like “claudin-low” subtype 

derives from a more pluripotent cell and the luminal subtype (predominately ER-positive) 

arise from more differentiated cells. Figure adapted from Lim et al. [36]. 
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into understanding the role of these stem cells in normal breast biology on breast cancer 

causation, it is accepted that the limited understanding of normal breast biology is a 

barrier to progress in breast cancer research. 
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1.2.2 The use of normal breast tissue in cancer research  

A major impediment to therapeutic development in TNBC, and breast cancer in 

general, is an inadequate understanding of the transcriptional biology of the normal 

breast as a comparator. The use of microdissected ductal epithelium from healthy 

women as the optimal control is not commonly used secondary to sample availability 

from healthy volunteers and laborious sample preparation. Many prior gene expression 

studies have used undissected reduction mammoplasty or histologically “non-cancerous” 

tissue adjacent to the tumor. Both of these controls are fraught with problems. 

Specifically hyperplastic breasts that require surgical reduction are clearly not “normal” 

and may harbour neoplasms or pathological atypia [57-60]. Likewise, normal tissue 

adjacent to tumor may be significantly impacted by factors released near the tumor 

microenvironment. This includes pertubations in global gene expression [61, 62], 

changes in epigenetic markers [63], and loss of heterozygosity [64, 65]. Thus, the use of 

normal breast tissues from healthy volunteers is an optimal control for the biological 

study of breast cancer.  

To address this, the research presented in this dissertation incorporated the use 

of fresh frozen biopsies of normal breast tissues from the Susan G. Komen for the Cure 

Tissue Bank at the Indiana University Simon Cancer Center. This unique collection of 

over a 1000 breast tissues with complementary germline DNA, serum, and clinical data 

provides a powerful resource for understanding normal breast biology but also to have 

an optimal comparator to better understand breast cancer. By using this type of 

resource, it empowers the researcher to understand the key differences that differentiate 

normal from cancer versus using sub-optimal controls which include reduction 

mammoplasties, adjacent normal, ductal carcinoma in situ cell lines, or even other 

breast cancer subtypes. In conclusion, as will be demonstrated in Chapter 2, the 
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answers that are derived by comparing TNBC to normal versus other cancer subtypes 

can have significant biological and clinical ramifications. 
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1.3 Next-generation whole transcriptome sequencing (RNA-Seq) 

 

1.3.1 Overview of next-generation sequencing and its role in cancer research 

 Next-generation sequencing (NGS) technology has revolutionized the study of 

genomics. This technology, also known as second-generation sequencing or massively 

parallel sequencing, allows for the interrogation of entire genomes, transcriptomes, and 

methylomes in an expedient and cost-effective manner. NGS is distinguished from its 

“first-generation” predecessor, Sanger/Capillary sequencing, by its shear sequencing 

output (Figure 11) [66]. In perspective, the first human genome reported in 2001 took 

~10 years and cost nearly $1 billion. Sequencing of human genomes is now 

approaching $15,000 per genome and ~2 weeks of sequencing time. For the first time, 

the ability to interrogate and compare multiple genomes, transcriptomes, and 

methylomes across individuals and across cancers is now possible.  

This explosion in sequencing capability has been fueled by advances in 

technology platforms. The current field of next-generation sequencing is dominated by 

three major systems: the Roche/454 Genome Sequencer FLX, the Illumina HiSeq 2000, 

and the Applied Biosystems (ABI) SOLiD 5500 XL (Figure 12). The Roche system is 

distinguished from the Illumina and ABI systems by its ability to sequence long reads 

(400-1000bp), but its low throughput (~1 GB/per run) suits this system for de novo 

sequencing applications where there is no reference genome or for lower order 

organisms with very small genomes. Unlike the Roche system, the Illumina and ABI 

systems are short-read technologies (50bp-150bp), but have considerable amount of 

throughput (~200-300GB/run). These platforms are best applied to projects where a 

reference genome is already available, in particular human sequencing. Because of the 

high throughput and high accuracy of the Illumina and ABI systems, these platforms 
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Figure 11. Increase in sequencing output due to technological advances in the 

last decade. Top: graph of sequencing output (logarithmic scale) due to technological 

advances over the last decade. The inflection of the curve in early 2005 coincides with 

the release of the first next-generation sequencer (Roche/454 GS-20). Since then, the 

increase in sequencing output has outpaced Moore’s Law. Bottom: Milestones of 

technology releases and major publications in sequencing history. Figure adapted from 

Mardis et al. [66]. 
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Figure 12. Current next-generation sequencing platforms. The Roche/454 GS FLX, 

Illumina HiSeq 2000, and ABI SOLiD 5500XL next-generation sequencing instruments. 

These platforms represent the most current versions of the top three next-generation 

sequencers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

have become the workhorses of the 1000 Genomes Project, the NIH Cancer Genome 

Atlas, and the International Cancer Genome Consortium.  

One of the major applications of NGS is the detailed study of malignancy. NGS 

offers the capability to interrogate the DNA of entire cancer genomes in order to identify 

point mutations, insertion/deletions, fusion genes, amplifications, and duplications [67]. 

This technology has so far brought novel insights into understanding the mutational 

profiles of AML, melanoma, multiple myeloma, breast, and lung cancers [67]. Recently, 

in an innovative approach, DNA NGS was used as a means to monitor response to 

therapy for a cohort of patients with colorectal and breast cancer. This was achieved by 

detecting the levels of chromosomal translocations in the plasma of these patients, likely 

coming from cells of the primary tumor [68]. Likewise, NGS also offers the ability to 

understand the cancer transcriptome at an unprecedented scale and depth. The advent 

of next-generation whole transcriptome sequencing (RNA-seq) has revolutionized the 

way genes are studied in malignancy [69-72]. In contrast to microarrays, which use a 

priori gene selection, this technology can profile every mRNA regardless if it is known or 

unknown, coding or non-coding, and adenylated or unadenylated, in an expedient 

manner. It can obtain accurate expression of genes (including isoforms) while also 

obtaining sequence data for mutation and fusion detection. NGS also does not suffer 

from signal saturation, hybridization artifacts, and poor resolution of quantitation as seen 

in microarrays [73]. So far, RNA-seq has revealed the presence of recurrent gene 

fusions in prostate cancer [69, 70], and in breast cancer. Specifically for breast cancer, a 

fusion involving S6 kinase and VMP1 (Vacuole Membrane Protein 1) which is correlated 

with upregulation of the oncogenic microRNA miR-21, has been detected in 30% of 

breast cancers [74]. RNA-seq has also revealed recurrent mutations in ovarian cancer 

[71, 72], and allelic imbalances due to copy number variation in oral squamous cell 

carcinomas [75]. As evidenced by several presentations at the recent American 
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Association for Cancer Research 2011 Annual Meeting, the field is still very much in its 

infancy. The many insights that will be revealed through NGS technologies, in particular 

comparisons of cancer vs. normal, are still on the horizon.  
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1.3.2 RNA-sequencing overview and chemistry of the Applied Biosystems SOLiD 

sequencer. 

 As mentioned in the last section, RNA sequencing has empowered cancer 

research to reveal new insights into the perturbations that define the cancer 

transcriptome. This includes measuring differential gene expression, alternative splicing 

and isoform expression, non-coding RNA expression and discovery, point mutations, 

small insertions and deletions, gene fusions, RNA editing, and pathogen (viral or 

bacterial) detection/insertional mutagenesis. Having the ability to measure all these 

endpoints when comparing cancer to normal makes RNA-seq a powerful tool to discover 

novel biology.  

 In the following description, a brief overview of RNA-seq chemistry will be given. 

Because the primary research of this dissertation focuses on RNA-seq technology using 

the SOLiD system, the following description will be focused only on SOLiD and not the 

other platforms. RNA-seq beings with a somewhat complicated sample and library 

preparation. Total RNA is extracted from the tissues of interests (i.e. TNBCs and 

normals), using standard extraction techniques. Because the majority of RNA in any 

given cell is ribosomal (rRNA), a method to remove rRNA is required. Two major 

methods exist: Poly-A selection and ribosomal depletion. Poly-A selection employs the 

use of beads with attached Poly-T oligos. In a simple process similar to 

immunoprecipitation, poly-adenylated mRNA is hybridized to the Poly-T beads in a tube. 

Meanwhile, the non-poly-adenylated RNA (in particular the rRNA) is not hybridized and 

remains in solution. The beads are rinsed and the poly-A-mRNA is then precipitated and 

used downstream. The second (newer) method of ribosomal depletion, removes only the 

rRNA while retaining the rest of the mRNA including non-poly-A mRNAs. This method 

employes the use of biotinylated Locked Nucleic Acid (LNA) probes that hybridize to 5S, 

5.8S, 18S, and 28S rRNA species. After the LNA probes are hybridized to the rRNA, 
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streptavidin coated beads are added causing the biotinylated-LNA probes to be attached 

to the beads. The beads are removed leaving ribosomally depleted mRNA. This method 

is considered superior, as non-Poly-A species of mRNA are retained, in particular many 

non-poly-A noncoding RNAs.  

 After ribosomal depletion, mRNA is fragmented and universal adaptors are 

ligated to the mRNA prior to reverse transcription (RT). Adaptors are ligated to the RNA 

prior to RT in order to retain the strandedness of the RNA in later data analyses. The 

adaptors are referred to as the P1 & P2 adaptors, where the P1 is ligated to the 5’ end of 

the RNA, and the P2 to the 3’ end (Figure 13A). The mRNA is then reverse transcribed, 

size selected, and PCR amplified using primers specific for the universal adaptors. The 

amplified cDNA is then hybridized to microbeads via the P1 universal adaptor to a 

complementary P1 sequence on the bead. A single cDNA molecule is attached to the 

bead, and the bead then undergoes an emulsion PCR (Figure 13B). In the emulsion 

PCR, the fragment is amplified in an oil-in-water microreactor to ~30,000 copies. The 

beads that had successful amplification are enriched via the P2 adaptor and the beads 

are then covalently attached to a glass slide (Figure 13C).  

 The slide is then placed on the SOLiD system inside of a flowcell where the slide 

acts as the surface for the subsequent sequencing chemistry. Sequencing reagents are 

literally flowed over the slide cycle-by-cycle. The SOLiD system uses a unique 

sequencing-by-ligation chemistry in which fluorescently labeled octomers are ligated to 

the template strand (for details see Figure 14). Once ligated, the fluorophore is excited 

and measured by a sensitive camera, measuring fluorescence from over 1 billion beads 

on the slide simultaneously. A unique feature of the octomers is that each of the four 

flourophores represents two bases, known as dual-base encoding or colorspace (Figure 

14). Also, as part of the sequencing process, each base is interrogated twice. The 

colorspace feature of the SOLiD allows for more accurate sequencing and more 
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Figure 13. Schematic of RNA-Seq library preparation for ABI SOLiD sequencing. (A) 

RNA is ligated with two universal adaptors (P1 & P2) then reverse transcribed and 

amplified. (B) Illustration of Emulsion PCR with an inset of what occurs at the molecular 

level. A single fragment is hybridized to beads via the P1 adaptor. Emulsion PCR occurs 

in an oil-in-water reactor where up ~30,000 copies of the fragment is produced on the 

bead. (C) Beads with a multitude of copies of a fragment are then enriched and then 

covalently attached to a glass slide. Figure arranged by M. Radovich and graphics are 

courtesy of Applied Biosystems, Inc.  
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sensitive SNP/mutation detection. This process of ligation and excitation occurs for a 

total of 50 cycles producing sequence reads that are 50bp long. In the end, the user is 

left with large text files that are transferred from the instrument. These files contain the 

sequence data for any given sample and are subsequently bioinformatically analyzed.  
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1.3.3 Overview of SOLiD RNA-seq bioinformatics and data analysis 

 Analyzing data from short read technologies provides a unique challenge in 

analyzing vast amounts of data in a short amount of time. Because short read 

technologies rely on a reference genome, these short reads must be first mapped (also 

called alignment) to the reference genome. This presents a daunting task that requires 

over a billion reads that are 50 letters long to be matched to a genome that is 3 billion 

letters long. Also, the mapping algorithm has to be able to account for natural genetic 

variation, sequencing error, and in the case of RNA, reads that cross exon-exon 

junctions. Thankfully, intelligent software has been developed to help overcome this 

challenge. Because the field of mapping algorithm development is quite active, newer  

algorithms that map reads faster and more accurately are continually being developed. 

In addition, the amount of permutations involved in read mapping requires a significant 

amount of computing resources. Most mapping software handles the vast amount of 

data and permutations by running in “parallel” fashion. Meaning, the software splits the 

job of mapping the reads of a sample to a reference genome into many parts (usually 

between 24 to 64 parts) that are then distributed onto a high performance computing 

cluster to run in parallel. Subsequent to mapping, bioinformatics tools are then used to 

extract useful biological information. This includes gene expression, alternative splicing, 

mutation detection, gene fusions among others (details of this are explained in the 

Methods sections of Chapters 2, 3 and Appendix 1). One of the major drawbacks of 

next-generation sequencing is the paucity of effective downstream analysis tools. 

Because of this, a substantial amount of analysis is done through the development of 

homemade analysis pipelines to reach the endpoints required by the user. As 

mentioned, the first step of RNA-seq data analysis requires the mapping of reads to a 

reference genome (i.e. human genome, hg18) (Figure 15). For SOLiD data, the optimal 

mapping algorithm is the ABI software BioScope. BioScope is uniquely designed to  
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Figure 14. Colorspace sequencing by 

ligation using the ABI SOLiD. (A) A four-

color sequencing by ligation method 

using the ABI SOLiD. Upon the 

annealing of a universal primer, a library 

of fluorescently labeled octomers is 

added. Appropriate conditions enable 

the selective hybridization and ligation 

of probes to complementary positions. 

Following four-color imaging, the ligated 

octomers are chemically cleaved with 

silver ions to generate a 5′-PO4 group. 

The SOLiD cycle is repeated nine more 

times. The extended primer is then 

stripped and four more ligation rounds 

are performed, each with ten ligation 

cycles for a total of 50 cycles. The octomers are designed to interrogate the first (x) and 

second (y) positions adjacent to the hybridized primer, such that the 16 dinucleotides are 

encoded by four dyes (colored stars). The probes also contain inosine bases (z) to 

reduce the complexity of the octomer library and a phosphorothiolate linkage between 

the fifth and six nucleotides of the probe sequence, which is cleaved with silver ions. (B) 

A two-base encoding scheme in which four dinucleotide sequences are associated with 

one color (for example, AA, CC, GG and TT are coded with a blue dye). Each template 

base is interrogated twice and compiled into a string of colorspace data bits. The 

colorspace reads are aligned to a colorspace reference sequence to decode the 

sequence. Figure and caption adapted from Metzker et al. [76]. 
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handle the mapping of colorspace data and takes advantages of its unique features. It 

begins by mapping reads to the reference genome. For those reads that do not map to 

the reference genome, it begins a process of determining whether those reads will map 

across an exon-exon junction (Figure 15). In order to do this, the software creates a 

compendium of all exon junctions that are possible for a given gene for all ~20,000 

genes in the genome. This is done by taking the sequence of all exons of a gene and 

assembling the various combinations. Thus for each gene, both known exon junctions 

and “putative” exon junctions are included to account for the potential of novel  

alternative splicing. Reads that do not map to the genome are then mapped against this 

exon junction library.  

 After read mapping, it is the goal to being to extract useful biological information 

from the mapped data. One of the first analyses that can be performed is differential 

gene expression. Recently, bioinformatic tools to analyze differential gene expression 

using RNA-seq have become available. In particular, work by Mortvazi et. al. has 

established the RPKM model (reads per kilobase-exon per million mapped reads) as a 

means of standardized gene expression from RNA-seq [77]. The RPKM unit allows for a 

normalized absolute gene expression value that allows one to compare the expression 

of genes between samples. It also corrects for biases introduced by the gene length and 

variation in sequencing depth for each sample by accounting for the number of mapped 

reads (example of RPKM data in Table 2). The RPKM model has been widely adapted 

to commercially available software and serves as the basis of all differential gene 

expression calculations performed in this dissertation. Extraction of gene expression 

from mapped data requires an a priori gene annotation. Very simply, this is a database 

that consists mainly of the chromosome and position numbers of an area of interest. For 

example, if one is interested in the differential gene expression of hsa-mir-21, a gene 

annotation database of microRNAs would have in its entry for hsa-mir-21: 
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Figure 15. Example of RNA-seq reads mapping to a gene. This example shows read 

mapping to the Vascular Endothelial Growth Factor-A (VEGFA) gene. Each of the small 

boxes represents a read. Notice the majority of reads map to exons which are 

represented by thick boxes at the bottom. Reads in which two boxes are connected by a 

thin line represent reads that span an exon-exon junction. Reads that map to introns in 

many cases represent sequencing data derived from pre-spliced mRNA. In some cases 

these reads also represent non-coding RNA expression transcribed from the introns of 

protein-coding genes. This figure was generated using the Integrative Genomics Viewer 

[78]. 
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chr17:55,273,409-55,273,480 (human genome, hg18). Most gene annotation database 

are available for download from the UCSC Genome Browser (http://genome.ucsc.edu). 

Gene annotations are also available from other private and public databases and from 

the literature. By combining the mapped data and the gene annotation database, RPKM 

values can then be calculated and then statistically compared between samples in order 

to derive differential gene expression. The sole exception to performing differential gene 

expression absent of a gene annotation database is when analyzing for novel 

transcribed regions (or areas of the genome where there is no annotated gene). 

In this case, the mapped data is used to create a de novo gene annotation database, 

and then RPKMs are calculated from there. 

 In addition to differential gene expression, it could be desired to extract 

mutational information from mapped RNA-seq data. This includes point mutations, small 

insertion/deletions, and gene fusions. RNA-seq presents a slight challenge in calling 

mutations as the ability to derive base sequences is proportional to the expression of the 

gene. Thus, the coverage of mutations by sequencing reads is not uniform across the 

genome, and requires statistical models that can account for the variability (see Figure 

16 for an example of coverage non-uniformity and point mutations). A recent algorithm 

named SNVMix2, has been developed to call point mutations specifically from RNA-seq 

data which account for the non-uniformity in coverage (more details presented in the 

Methods section of Chapter 3 and Appendix 1) [79].  

Small insertion deletions (indels) are also called along the same line in terms of 

the need for coverage, but these mutations require special processing known as gapped 

alignment. Because indels by definition will have either missing bases (deletion) or extra 

bases (insertion) in the sequence read compared to the reference genome, the 

alignment software has to account for this sort of variation. In order to do this, the 

alignment software will break the read into smaller pieces and then begin to map the 

http://genome.ucsc.edu/�
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Table 2. Representative example of RPKM data. Gene expression of a portion of 

chromosome 6 derived from an RNA-seq experiment. The first 4 columns denote the 

read and position numbers of a gene isoform and the strand from which it is transcribed. 

The fifth column is the unique RefSeq ID for the isoform followed by the gene symbol in 

the sixth column. These first 6 columns were derived from a gene annotation database 

downloaded from the UCSC Genome Browser. Columns 7-10 illustrate the absolute 

gene expression values (RPKM) for each sample (in this case TNBCs) for each given 

gene isoform. 
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smaller pieces and extend the alignment from those pieces in order to merge them. The 

alignment software will allow for missing bases or extra bases in order to complete the 

merge, in essence mapping the read around the indel (Figure 17). 

Finally, gene fusions present yet another unique bioinformatic challenge. In this 

case, the informatic search is for reads where one end of the read maps to one gene, 

and the other end of the read maps to a different gene (Figure 18). Because of 

sequence homology shared between like genes, a large degree of false positives are 

generated from fusion calling. That is why statistical confidence on whether a fusion truly  

exists depends on the number of reads that cross a fusion junction, and the uniqueness 

of the sequence reads that span the junction. Fusions can be between genes on the 

same chromosome (intrachromosomal) or genes on different chromosomes 

(interchromosomal). In RNA-seq, another level complexity is added in that 

intrachromosomal fusions can either be true fusions (usually caused by deletions in the 

underlying DNA between two genes) or can be the result of trans-splicing/read-through 

fusions in which two RNA transcripts are fused but there is no mutation in the DNA. 

Data analysis of next-generation RNA sequencing is a complicated and arduous 

task. This section provides an overview of key points of what is involved in analysis of 

this data. In addition to these points, more downstream analyses such as network 

analysis, gene set enrichment, and gene ontologies which are also used in microarray 

data, can also be applied to RNA-seq data. As these tools are quite mature and 

commercially available, they are not detailed here. More granular details about  

RNA-seq bioinformatics are provided in the Methods sections of Chapters 2 and 3 and in 

Appendix 1 (Bioinformatics Appendix). 

Recent comments by the co-director of the Washington University Genome 

Center and members of the NIH Cancer Genome Atlas at the AACR 2011 Annual 

Meeting has communicated that the ability to produce sequencing data is outpacing the 
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Figure 16. Example of non-uniformity in coverage when calling mutations from mapped 

RNA-seq data. (LEFT) A homozygous C-to-T mutation in a “highly expressed” gene, 

KRT17. Because of its high expression, a multitude of reads cover the mutation giving 

substantial statistical confidence that this is a true mutation. (RIGHT) A heterozygous T-

to-C mutation in PARP4 which is expressed less than KRT17. This mutation is harder to 

call as there is less read coverage (in this case 6 reads) and it is also heterozygous (2 

reads to the T allele and 4 reads to the C allele). In both cases these mutations are real 

(biologically verified), illustrating the need for bioinformatic algorithms that can account 

for differences in read coverage when calling mutations across the genome from 

mapped RNA-seq data while being vigilant against false positive mutations. 
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Figure 17. Example of a deletion (represented by the thick black line) detected from 

mapped RNA-seq data. In this case, an 8-bp deletion in the 3’-UTR of the MAL2 gene 

was detected from a TNBC tumor. 
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Figure 18. Diagram of detecting a gene fusion from reads crossing a fusion junction. In 

this case, a representative example of using RNA-seq to detect the ERG-TMPRSS2 

fusion in prostate cancer. Figure adapted from Maher et al. [69].  
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computational and human resources needed to analyze it. New methods to analyze 

RNA-seq are continuing to be developed. Specifically, advancements in assembling 

known and novel gene isoforms from RNA-seq data [80-82] as well as better statistical 

models to assess differential expression are at the forefront [83, 84]. As the field of 

cancer genomics using NGS is in its infancy, so is also the bioinformatic framework to 

analyze these large and powerful datasets.  
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1.4 Statement of purpose 

  

The paucity of therapeutic targets in TNBC coupled with a lack of understanding of 

the global transcriptional differences between TNBC and normal breast has led us to use 

new technologies that can survey the transcriptome at an unprecedented depth. By 

using next-generation whole transcriptome sequencing (RNA-seq), we have sequenced 

the transcriptomes of 10 TNBCs and 10 normal breast tissues derived from healthy 

volunteers. We hypothesized that by sequencing the transcriptomes of TNBCs and 

microdissected normal tissues, we will identify novel biology, therapeutic targets, and 

recurrent mutations. This was accomplished through the following aims: 

 

1. By sequencing and analyzing the transcriptomes of 10 TNBCs and 10 normal 

breast tissues derived from microdissected ductal epithelium, we observed key 

transcriptional differences between these tissues that have leant clues into the 

outcomes of current treatments for TNBC, and potentially identified novel 

therapeutic targets for future therapeutic development.  

 

2. By using recently developed bioinformatic tools to identify mutations from 

mapped RNA-seq data, we have identified novel mutations in TNBC that may 

lead to a better understanding of disease causation. 

 

The following chapters of this dissertation detail the methods and results of these two 

aims.  

 

 



45 
 

Chapter 2: Differential gene expression of the transcriptomes of TNBC 

and normal breast tissue 

 

2.1 Introduction 

 

 Triple-negative breast cancer (TNBC) is a devastating disease that lacks 

effective therapeutic targets. A major impediment to discovering novel biology and 

developing new therapeutics for TNBC is a lack of understanding of the key 

transcriptional differences that differentiate TNBC from the normal breast. 

Microdissected ductal epithelium (the presumed origin of breast cancer) from normal 

breast tissues is not commonly used secondary to sample availability and difficulty in 

preparation. Previous gene expression studies have used either other subtypes of breast 

cancer (ER-positive or HER2-positive) or suboptimal normal controls which include 

reduction mammoplasties or adjacent normal tissue as comparators. As differential gene 

expression, by definition, is always relative to a control, the use of these suboptimal 

controls may lead to different conclusions than one would obtain when comparing TNBC 

to true normal tissue. In this study we sought to determine the key transcriptional 

differences between TNBC and normal for both coding and non-coding RNAs, and to 

determine whether these differences can explain the outcome of previous targeted 

therapies in TNBC and possibly identify new targets.  

 Our tool to perform this transcriptome wide comparison is next-generation whole 

transcriptome sequencing (RNA-seq). RNA-seq is a powerful technology that can survey 

the transcriptome at an unprecedented depth. In contrast to microarrays, which use a 

priori gene selection, this technology can profile every mRNA regardless if it is known or 

unknown, coding or non-coding, and adenylated or unadenylated, in a cost-effective and 

expedient manner. The ability to capture all transcripts, coupled with sequence and 
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expression data, provides the input necessary to discover novel biology in an unbiased 

fashion. By analyzing RNA-seq data from TNBC tumors and normal breast tissues, we 

report a transcriptome-wide comparison of these tissues uncovering differentially 

expressed coding and non-coding genes that have not previously been implicated in 

triple-negative breast cancer. 
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2.2 Materials and methods 

 

Selection of normal tissues for RNA-Seq and microdissection 

Ten fresh-frozen normal breast tissues (core biopsies) from healthy pre-

menopausal volunteers with no history of breast cancer were procured from the Susan 

G. Komen for the Cure® Tissue Bank at the Indiana University Simon Cancer Center. In 

choosing the tissues used for this study, Hematoxylin & Eosin (H&E) slides from core 

biopsies of various donors were reviewed in order to choose samples that contained 

high epithelial content, and thus produce more RNA. In an embedded pilot sub-study 

(outside of the main purview of this dissertation), five of the ten samples were from 

women in the follicular phase of the menstrual cycle, and five women were in the luteal 

phase. This was done in order to do determine the effects of the menstrual cycle on the 

gene expression of normal ductal epithelium. Because ductal epithelium (the presumed 

origin of breast cancer) comprises a minority of cells in the breast, normal tissues were 

laser capture microdissected (LCM) using the Arcturus Veritas and PixCell 

Microdissection Systems (Molecular Devices, Sunnyvale, CA). To perform the LCM, 

each frozen biopsy was sectioned (5µM thick) onto special membranous slides to create 

35 slides each containing 2 sections for a total of 70 sections. These slides were then 

frozen at -80°C until it was time to LCM. When it was time to LCM, three slides were 

removed from the freezer at a time, and stained using the HistoGene LCM Frozen 

Section Staining Kit (Arcturus) which involves dehydration with ethanol and xylene 

followed by staining with a solution similar to hematoxylin. This allowed the epithelium to 

stain blue (Figure 19). Cells were then dissected using the LCM microscope within one 

hour in order to avoid RNA degradation. RNA from captured cells was then extracted 

using the PicoPure RNA Isolation Kit (Arcturus) and the purified RNA was quantified 

using the Qubit Fluorometer (Invitrogen, Carlsbad, CA) (See Table 3 for sample details 
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and RNA yields). Because of the lower yields associated with LCM, the entire amount 

collected was used for the RNA-seq library preparation. 

 

Selection of TNBC samples for RNA-seq 

RNA from ten triple-negative breast cancers (TNBC) were procured from 

OriGene Technologies. All samples were pathologically verified for high tumor content 

and did not necessitate microdissection. TNBC samples were from pre-menopausal 

women in order to match our normal cohort (Table 4). All samples were quantified using 

the Qubit Fluorometer (Invitrogen, Carlsbad, CA). There was an abundance of available 

RNA, so 5µg was used for RNA-seq library preparation. The use of all samples including 

normals and TNBCs were approved for use by the Indiana University Institutional 

Review Board. After sample preparation, RNA was sent to Cofactor Genomics (St.Louis, 

MO), who performed the ribosomal depletion, library preparation and sequencing where 

subsequent analyses and validations were performed at Indiana University. 

 

Ribosomal RNA depletion of samples 

Because the majority of RNA in a cell is ribosomal, in order to profile the unique 

transcriptome, samples used for sequencing were depleted for ribosomal RNA (rRNA). 

Removal of rRNA was not achieved by traditional poly-A RNA selection, but by rRNA 

depletion via locked nucleic acid probes. This allowed for profiling of both poly-A and 

non-poly-A RNA species. Using the RiboMinus Eukaryote Kit (Invitrogen), samples were 

depleted for 5S, 5.8S, 18S, and 28S rRNA, per manufacturer’s instructions. Briefly, total 

RNA was hybridized to rRNA-specific biotin labeled probes at 70°C degree for 5 

minutes. The rRNA-probe complexes were then removed by incubating with streptavidin-

coated magnetic beads. The rRNA free transcriptome RNA was precipitated with ethanol 

and concentrated. 
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Figure 19. Pictures of normal ductal epithelium from frozen normal breast tissues before 

and after LCM. The normal ducts are stained blue. A laser was used to circumscribe the 

ducts, followed by a separate laser to melt a plastic film from a cap used in the LCM 

procedure in order to detach the tissue. LCM made it possible to focus sequencing 

efforts on RNA from ductal epithelium. 
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Sequencing ID Komen Sample # Total 
RNA 

Menstrual 
Phase 

Normal #1 104825 1.300ug Follicular 

Normal #2 104877 4.053ug Follicular 

Normal #3 102442 0.758ug Follicular 

Normal #4 102428 2.712ug Luteal 

Normal #5 104841 0.333ug Follicular 

Normal #6 102583 0.612ug Luteal 

Normal #7 102541 1.273ug Luteal 

Normal #8 104867 0.630ug Luteal 

Normal #9 102518 0.589ug Follicular 

Normal #10 102430 0.240ug Luteal 
 

Table 3. Normal samples used for RNA-seq with corresponding information. Information 

includes ID number from the Susan G. Komen Tissue Bank at the IUSCC, total RNA 

yield, and menstrual phase for each donor. 
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Sample ID Age 

Case Diagnosis from Donor 
Institution Pathology 

Report Tumor Grade TNM 
Tumor #1 20 Adenocarcinoma of breast, 

ductal 
Nottingham G3: 8-9 points 

High combined grade 
(unfavorable) 

pT1bpNXpMX 

Tumor #2 31 Adenocarcinoma of breast, 
ductal, recurrent 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT2pN0pMX 

Tumor #3 32 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT2pN0pMX 

Tumor #4 36 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT1cpN1mipMX 

Tumor #5 37 Adenocarcinoma of breast, 
ductal, medullary features 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT2pN0 (i-)pMX 

Tumor #6 38 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT2pN1apMX 

Tumor #7 39 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT2pN1pMX 

Tumor #8 40 Adenocarcinoma of breast, 
ductal, medullary features 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT1cpN0pMX 

Tumor #9 42 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT1cpN3bpMX 

Tumor #10 49 Adenocarcinoma of breast, 
ductal 

Nottingham G3: 8-9 points 
High combined grade 

(unfavorable) 

pT3pN1apMX 

 

Table 4. TNBC samples used for RNA-seq with corresponding information. Information 

includes age, diagnosis, grade and TNM (Tumor Node Metastasis) staging. 
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RNA fragmentation and adaptor ligation 

The SOLiD Whole Transcriptome Analysis Kit (Applied Biosystems, Foster City, 

CA) was used to create the transcriptome libraries. Briefly, transcriptome RNA in 8µL 

was incubated with 1µL RNase III and 1µL 10X RNase III Reaction Buffer at 37°C for 10 

minutes for fragmentation. 90µL of nuclease-free water was added into each reaction for 

cleanup using the RiboMinus Concentration Module (Invitrogen). Fragmented RNA was 

hybridized with 2µL Adaptor Mix A and 3µL Hybridization Solution at 65°C for 10 minutes 

followed by 16°C for 5 minutes. For RNA ligation, 10µL Ligation Buffer and 2µL Ligation 

Enzyme Mix were added to the hybridization reaction at 16°C and incubated for 16 

hours. 

 

cDNA synthesis 

A 20µL reverse transcription master mix containing 13µL of nuclease-free water, 

4µL of 10X RT buffer, 2µL of 2.5 mM dNTP Mix and1µL of ArrayScript Reverse 

Transcriptase was added to the previous 20µL ligation reaction and then incubated at 

42°C for 30 minutes. Synthesized cDNA was purified with the Qiagen MinElute PCR 

Purification Kit (Qiagen, Valencia, CA) and eluted in 10µL EB buffer. The purified cDNA 

was run on a Novex 6% TBE-Urea Gel (Invitrogen) for size selection. The excised gel of 

150-250nt was divided into 4 pieces and two in-gel PCR reactions were conducted to 

obtain enough material for subsequent emulsion PCR (ePCR). Meanwhile, each library 

is barcoded by using PCR primers containing different barcodes to allow multiple 

samples to be sequenced simultaneously on the SOLiD 3 system.  

 

Emulsion PCR and sequencing  

Emulsion PCR was conducted according to manufacturer’s instructions (Applied 

Biosystems SOLiD 3 System Templated Bead Preparation Guide). The amplified beads 
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were first run on a Work Flow Analysis (WFA) slide to determine the quality and quantity 

of beads which was followed by two 50bp fragment sequencing runs using both slides. 

(Applied Biosystems SOLiD 3 System Instrument Operation Guide). 

 

Read mapping 

The SOLiD 3 system produces two primary output text files: the .csfasta file 

which contains the sequencing reads in colorspace format, and the .qual file which 

contains the quality values for each colorspace call. These primary output files from the 

SOLiD 3 were loaded onto a compute cluster and the reads were mapped in colorspace 

using the Applied Biosystems BioScope 1.2 software using default parameters (see 

Bioinformatics Appendix 1 for required input files). Reads were mapped to the human 

genome (hg18) downloaded from the UCSC Genome Bioinformatics Site 

(http://genome.ucsc.edu). The hg18 genome was slightly modified by deleting the Y 

chromosome in order to make a female genome. An hg18 exon reference file provided 

by Applied Biosystems was required by BioScope in order to create the exon junction 

libraries needed to map reads that cross exon boundries. This file was derived from the 

refGene database from UCSC. Also, a human filter reference file was required (provided 

by Applied Biosystems) that contains the sequences of repetitive regions of the genome. 

in order to filter reads that mapped to repetitive areas of the genome. Mapped reads 

were outputted from BioScope in the standard BAM (Binary Alignment/Map) format. 

 

Gene expression analysis 

BAM files were imported into Partek Genomics Suite 6.5 (Partek Incorporated, 

St. Louis, MO) for gene expression analysis. First, reads were cross-referenced against 

the RefSeq database (downloaded from UCSC) and RPKM values generated for each 

gene. Refseq is a database of ~20,000 highly annotated (mostly protein coding) genes. 

http://genome.ucsc.edu/�
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Because the SOLiD 3 retains strandedness as part of its chemistry, we were capable of 

quantifying gene expression if two genes overlapped on opposing strands. The RPKM 

values of each gene for the 10 normals and the 10 TNBC tumors were then statistically 

compared using a 1-way ANOVA with a multiple test correction of FDR < 0.01. A one-

way ANOVA was used as only one comparison (tumor vs. normal) was being 

considered. The same methods were then subsequently applied to pre-miRNAs, Ultra 

Conservered Regions (UCRs), and long intergenic non-coding RNAs (lincRNAs). Gene 

annotations for pre-miRNAs were downloaded from the wgRNA database at UCSC, 

UCRs from the uc16 database on the UCSC test-server, and lincRNAs from 

supplementary data in a publication from Khalil et al. [85]. In order to assess clustering 

of the samples, Principal Components Analysis of RPKM values from RefSeq genes was 

performed in Partek Genomics Suite. For network analysis, statistically significant genes 

were analyzed using the Ingenuity Pathway Analysis software (Ingenuity Systems, 

Redwood City, CA).  

 

Novel transcribed regions (NTRs) 

To identify differentially expressed novel transcribed regions (NTRs), we 

analyzed the entire genome for areas of significant expression for which there is no 

known annotated gene. We chose areas of novel transcription with the following criteria: 

1) the NTR had to be a minimum of 10,000bp away from the nearest RefSeq gene to 

reduce the possibility of detection of a novel exon to a known gene, 2) the NTR must be 

at least 50bp long, 3) there must be at least 20 supporting reads mapping to the NTR. 

We then further filtered out loci that overlapped known miRNAs, lincRNAs, UCRs, 

snoRNAs, snRNAs, scRNAs, rRNAs, tRNAs, and mtRNAs. Regions that satisfied these 

criteria were then compiled using GALAXY (http://galaxy.psu.edu), a online 

bioinformatics software suite, to determine start and end coordinates of each region and 

http://galaxy.psu.edu/�
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to form a new “NTR reference.” This method of determining region boundaries is not the 

optimal method (compared to traditional cloning methods), but provides an initial screen 

for differential expression. Reads were then cross-referenced against the NTR reference 

to calculate RPKM values with subsequent statistical comparison between TNBC and 

normal samples using 1-way ANOVA (FDR < 0.01 as the significance cutoff). 

 

Validation cohort of samples used for qPCR validation of differential gene expression 

A separate cohort of ten fresh-frozen normal breast tissues from healthy pre-

menopausal volunteers with no history of breast cancer was procured from the Susan G. 

Komen for the Cure® Tissue Bank at the Indiana University Simon Cancer Center. In 

this validation cohort, five samples were from women in the follicular phase of the 

menstrual cycle, and five women in the luteal phase, the same as the sequencing 

cohort. These samples were also laser capture microdissected for ductal epithelium as 

described previously, but with the following exceptions. The LCM was performed using a 

Leica System (Leica Microsystems, Buffalo Grove, IL) and the RNA was extracted with 

the miRNeasy Mini Kit (Qiagen) which extracts both full-length and microRNA.  

In addition, a separate cohort of 26 fresh-frozen TNBC tumors were procured 

from the Indiana University Simon Cancer Center Tissue Bank and from Asterand plc. 

The 26 TNBC tumors represented a mixture of pre- and post-menopausal patients. RNA 

was extracted from the 26 TNBC samples using the miRNeasy Mini Kit (Qiagen). All 

samples were quantified using the Qubit Fluorometer (Invitrogen). 

 

qPCR validation of EGFR, KIT, & PARP1 differential gene expression 

TaqMan qPCR was performed using the following inventoried TaqMan assays 

from Applied Biosystems: 
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Gene Symbol Gene Name Assay Type ABI Assay ID 
EGFR epidermal growth factor receptor Target Hs01076091_m1 

KIT 
v-kit Hardy-Zuckerman 4 feline 

sarcoma viral oncogene 
homolog 

Target Hs00174029_m1 

PARP1 poly (ADP-ribose) polymerase 1 Target Hs00242302_m1 

HNRNPH1 heterogeneous nuclear 
ribonucleoprotein H1 (H) Housekeeper Hs00800662_sH 

IPO8 importin 8 Housekeeper Hs00183533_m1 
 

The housekeeping genes, HNRNPH1 & IPO8, were chosen for their low coefficient of 

variation among the samples in the next-generation sequencing data. 

Briefly, 20ng of RNA from each sample of the validation cohort was reversed 

transcribed using the High Capacity RNA-to-cDNA kit (Applied Biosystems). cDNA was 

then pre-amplified using TaqMan PreAmp Master Mix (Applied Biosystems) and the 

TaqMan assays per manufacturer’s instructions. qPCR of target genes and 

housekeepers was performed in triplicate using TaqMan Gene Expression Master Mix 

(Applied Biosystems) and the above listed assays. qPCR reactions were run on an ABI 

7900HT Real-Time PCR System and data analyzed using the SDS2.3 and DataAssist 

v2.0 software from Applied Biosystems. Fold change was calculated using the standard 

ΔΔCt method incorporating the geometric mean of the housekeepers. Error bars 

represent the Standard Error of the Mean (S.E.M). P-values were calculated using t-test.  

 

Immunohistochemistry (IHC) of EGFR and KIT 

 IHC was performed for EGFR using the Dako EGFR PharmDX Kit per 

manufacturer’s instructions (Dako, Denmark). For KIT, slides were deparaffinized using 

successive ethanol and xylene washes followed by antigen retrieval in a pressure cooker 

using TRS low pH buffer (Dako). Slides were incubated in 3% hydrogen peroxide for 10 

minutes and then rinsed. The slides were then incubated with an anti-human c-Kit 

antibody (Dako) at a 1:200 dilution for 10 minutes and then rinsed. This slides were then 
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incubated with Flex reagent + Rabbit linker (Dako) for 10 minutes then rinsed, followed 

by and incubation with Flex reagent HRP for 10 minutes and rinsed, followed by 

incubation with Flex reagent DAB for 5 minutes and then rinsed. Slides were then 

counterstained, dehydrated, and then coversliped. Slides were then read and scored by 

an experienced breast pathologist (Dr. Sunil Badve). Data analysis was performed by 

calculating a H-score for each sample (Intensity x % cellular staining) followed by 

statistical comparison using t-test. 
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2.3 Results 

 

2.3.1 RNA sequencing output of TNBCs and normals  

 RNA sequencing of the 10 TNBCs and 10 normal breast tissues was performed 

on the Applied Biosystems SOLiD 3 next-generation sequencer using 50bp fragment 

runs. A total of 2 sequencer runs across 4 flowcell slides was performed. The 

sequencing produced a total of 1.1 billion reads equaling 57.3 GB of data of which 

36.0GB (63%) mapped to the human genome (Table 5). A 63% mapping rate is 

reflective of the standard 60-70% average mapping rate seen in RNA-seq experiments 

[77]. Unmapped reads can occur for a variety of reasons including sequencing error, 

inability to uniquely map a read, and transcription from gapped or unassembled areas of 

the genome. Total output of RNA-sequencing was equivalent to 18 human genomes. On 

average, each sample had 36 million mapped reads for which gene expression values 

were interrogated.  
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2.3.2 Profiling and differential expression of known genes from the RefSeq 

database 

Data from mapped reads were first cross-referenced against 20,839 known genes in the 

RefSeq database and RPKM values calculated for each gene. In our first analysis, we 

performed unsupervised Principal Components Analysis (PCA) of the data using RPKM 

values for the normal samples only (Figure 20). A PCA analysis reduces the 

dimensionality of the data (in this case 20,839 axes) to a three dimensional space which 

allows one to determine how different or alike a group of samples are based on their 

gene expression. The PCA clustering shows a significant separation of the normal 

samples between follicular and luteal samples. The analysis of the genes that 

differentiate the normal breast samples is outside the purview of this dissertation, but do 

include genes involved in chromosomal separation, mitosis, and gland development 

(data not shown).  

In our next analysis, we compared TNBC to normal breast epithelium using PCA. 

The PCA demonstrates a significant separation of TNBC and normal samples illustrating 

the vast differences in their respective transcriptome profiles (Figure 21). To better 

understand the individual genes that differentiate TNBC and normal breast, we 

compared the RPKM expression values between the 10 TNBCs and 10 normal breast 

tissues for each gene using 1-way ANOVA. In Appendix 2, we report the differentially 

expressed genes between TNBC and normal breast sorted by p-value. When 

considering a false discovery rate (FDR) < 0.01, we report 7,140 differentially expressed 

RefSeq genes. In a first- pass analysis of the individual genes that differentiate TNBC 

from normal, we sought to confirm the findings of other groups that TNBC is not of 

basal/myoepithelial origin, but instead derives from a luminal origin (reviewed in Section 

1.1.2). To do this, we looked at the expression of some key basal and luminal markers. 

Congruent with past literature, we observed a downregulation of basal markers CD10 
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Table 5. Sequencing output from RNA-seq of 10 normal breast tissues and 10 TNBCs. 

The table show the number of reads produced for each sample, and the number of the 

reads that mapped to human genome. Summary statistics are at the bottom. 
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Figure 20. Principal components analysis (PCA) of normal samples. The PCA illustrates 

in three dimensional space the global gene expression clustering of samples. The 

diagrams show that normal ductal epithelium derived from women in the follicular phase 

of their menstrual cycle nicely separate from samples derived from women in the luteal 

phase of their menstrual cycle suggesting an effect of the menstrual cycle on the 

transcriptomes of ductal epithetlium. This unsupervised PCA was created using log2

 

 

transformed RPKM data from RefSeq genes with very low expressing genes (max 

RPKM < 1) omitted. 
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(RefSeq gene symbol: MMF, -6.5 fold downregulated), p63 (RefSeq gene symbol: TP63, 

-8.8 fold downregulated), and alpha-smooth muscle actin (RefSeq gene symbol: ACTA2, 

-2.32 fold downregulated), in TNBCs when compared to normal (all genes statistically 

significant at p < 0.005). We also observed a significant upregulation of luminal 

Cytokeratin 8 (RefSeq gene symbol KRT8, 5.3 fold upregulation, p=0.002), and 

significant expression of Cytokeratins 5,6, & 18 that were not significantly different from 

normal. These findings together support the work of others of a luminal phenotype for 

TNBC [33-37], and further confirm as a positive control the validity of the bioinformatic 

and statistical framework for the differential gene expression. 

The #1 most statistically significant differentially expressed gene was COBRA1 

(cofactor of BRCA1, 3.67 fold upregulated, p=7.42e-12). This gene is quite interesting in 

the context of TNBC in that is a negative regulator ER-alpha activity [86, 87], and 

physically associates with BRCA1. COBRA1 is part of the negative elongation factor 

complex and is known to suppress ER-alpha mediated transcription by RNA Polymerase 

II [86]. In work by Aiyar et al., shRNA knockdown of either COBRA1, BRCA1 or the 

combination of both in T47D human breast cancer cells (ER-positive) followed by 

microarray analysis showed a significant overlap of the genes that are regulated by both 

proteins [88]. A total of 287 genes overlapped, and gene ontology analysis showed an 

enrichment of genes involved in cell cycle control, proliferation, development, cell death, 

and cancer. A review of the literature shows that the overwhelming majority of research 

on COBRA1 has been performed in ER+ cell lines, and thus the implications of COBRA1 

in TNBC is unknown. Further, the role of COBRA1 in breast cancers already defective 

for BRCA1 is still to be determined. Nonetheless, a protein involved in inhibition of ER-

alpha working in concert with a protein well known to be implicated in TNBC (BRCA1) 

warrants further study. 
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Figure 21. Principal components analysis (PCA) of TNBC and normal samples. The 

PCA analysis demonstrates a significant separation of TNBC and normal samples 

illustrating drastically different transcriptional profiles. This unsupervised PCA was 

created using log2

 

 transformed RPKM data from RefSeq genes with very low expressing 

genes (max RPKM < 1) omitted. 
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To better understand the differential expression of genes at a more genome-wide 

level we performed a pathway analysis of the 7,140 genes which revealed many 

networks known to be involved in tumorigenesis. One of the statistically significant 

pathways identified was “Role of BRCA1 in DNA Damage Response” (Figure 22). This 

pathway contains many genes involved in the BRCA pathway and its downstream 

effectors. As mentioned in Section 1.1.1, TNBCs are defective in their DNA repair 

capacity [17, 18], and it is not surprising to see many genes in the BRCA/DNA repair 

pathway to be significantly upregulated in TNBC. Interestingly, BRCA1 itself is not 

differentially expressed, and its raw expression is very low both in normals and TNBCs. 

As seen in Figure 22, genes such as the Fanconi Anemia family (including BRCA2), 

MSH2, MSH6, ATR, CHK1, CHK2, and PLK1 are all significantly upregulated in TNBC. 

 Of interest, inhibitors of CHK1 & CHK2, are in several early clinical trials led by 

Eli Lilly, Pfizer, AstraZeneca, and Exelixis [89]. Similarly, several inhibitors of PLK1 

(polo-like kinase 1) are in early clinical trials led by GlaxoSmithKline, Boehringer 

Ingelheim, and Tekmira (clinicaltrials.gov). The effectiveness of these drugs in TNBC is 

still yet to be determined. 

We then examined the differential expression of genes that have been targeted 

in late stage clinical trials. Recently, inhibition of the DNA repair protein PARP has 

demonstrated clinical activity for patients with sporadic TNBC [25]. In our study, PARP 

expression was indeed significantly upregulated when compared to normal breast (Table 

6). In addition to PARP, there were some equally important and interesting genes/targets 

that were not overexpressed as expected. EGFR and KIT, which have previously been 

shown to be overexpressed in TNBC [8] (and unsuccessfully tested as drug targets [9-

14]) were not differentially expressed or even down-regulated, respectively, when 

compared to normal breast in our study (Table 6). To further validate these findings, we 
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Figure 22. BRCA1 in DNA damage response pathway. This pathway shows many 

genes that are upregulated in the BRCA1 pathway and illustrates the importance of this 

pathway in TNBC. This figure was generated using Ingenuity Pathway Analysis of 

statistically significant differentially expressed genes. 
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assessed the gene expression of EGFR, KIT, and PARP1 in a separate cohort of 26 

frozen TNBCs and 10 normal samples by qPCR (Figure 23). The qPCR data from the 

validation cohort confirmed the findings from the next-generation sequencing of a lack of 

differential expression of EGFR, downregulation of KIT, and upregulation of PARP1 

(Figure 23). To further confirm at the protein level, we performed immunohistochemistry 

(IHC) for EGFR and KIT on 20 normal breast tissues and 11 TNBCs (Figures 24 and 

25). EGFR and KIT IHC are standard clinical stains in our hospital laboratory. The IHC 

also demonstrates no difference in EGFR expression and downregulation of KIT in 

TNBC compared to normal (Figures 24 and 25). Interestingly, the lack of upregulation of 

EGFR and KIT when comparing TNBC to normal is in contradiction to previous reports 

of overexpression of these genes in TNBC [8]. Strikingly, our data is in line with clinical 

trial outcomes of agents that target these proteins, and suggests that comparing TNBC 

to microdissected ductal epithelium versus other suboptimal comparators may yield 

better therapeutic targets.  

Building upon that observation, we analyzed the dataset to see if we could 

identify novel therapeutic targets. In addition to the previous thought that EGFR and c-

KIT were overexpressed in TNBC, these proteins were attractive clinical targets because 

of their intrinsic nature as receptor tyrosine kinases (RTKs). RTKs are potent activators 

of key signaling cascades important for tumor cell proliferation and survival [90]. Indeed, 

RTK inhibition has had a history of success in cancer, for example EGFR in lung cancer 

[91], HER2 in breast cancer [92], and VEGFR2 in renal cell carcinomas [93]. With our 

dataset suggesting that EGFR and c-KIT are not the RTKs overexpressed in TNBC, we 

obtained a list of 58 known RTKs in the human genome [94]. 32 of these 58 were 

significantly expressed in our samples. We then statistically compared these 32 RTKs 

between the 10 TNBCs and 10 normals to form a volcano plot (Figure 26). This volcano 

plot identifies significant RTKs by considering both fold change and statistical  
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Table 6. Differential gene expression of three drug targets clinically tested in enriched 

TNBC patient populations and their clinical trial outcomes. The table reports the prior 

rationale for inhibiting these targets in TNBC and then compares it to our data using 

RNA-seq of TNBC vs Normal. When compared to normals, we observe no difference in 

EGFR expression, downregulation of KIT, and upregulation of PARP1 in TNBC. These 

results are congruent with clinical trial outcomes testing targeted agents against these 

proteins. This data suggests that comparing TNBC to normal may explain the outcome 

of previous clinical trials, and may potentially identify novel therapeutic targets.  
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Figure 23. Biological validation of next-generation sequencing results of EGFR, KIT, and 

PARP1 using Taqman qPCR. qPCR was performed in a separate validation cohort of 26 

TNBCs and 10 microdissected normals. Error bars reflect standard error of the mean 

and p-value is from t-test. HNRNPH1 (Heterogeneous nuclear ribonucleoprotein H) and 

IPO8 (Importin 8) were used as housekeepers. The qPCR data from the validation 

cohort confirmed the findings from the next-generation sequencing of a lack of 

differential expression of EGFR, downregulation of KIT, and upregulation of PARP1. 
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Figure 24. Immunohistochemistry (IHC) of EGFR and KIT on normal and TNBC breast 

tissues. Clinically used IHC stains were used on 20 normal and 11 TNBC breast tissues 

and then scored by an experienced breast pathologist. Each tissue was given a staining 

intensity (0+,1+,2+,3+) and a percent cell staining (0-100%). The H-score is calculated 

by multiplying the intensity with the percent cell staining, giving a possible range of 0-

300. This data demonstrates that at the protein level, there is no statistical difference in 

EGFR between normal and TNBC, and a significant downregulation of KIT in TNBC 

compared to normal. 
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Figure 25. Representative IHC stains for EGFR and KIT of normal and TNBC tissues. 

(A) IHC of EGFR shows variable expression across normal tissues. Appreciable staining 

can be seen in the myoepithelial cells. IHC of TNBCs also shows variable expression. 

The top panel demonstrates a TNBC with very strong staining, where the second panel 

shows no staining, while there is weak staining in the third and fourth panels. This 

pattern is consistent with entire the entire IHC sample set, as well as the RNA gene 

expression datasets. (B) IHC of KIT shows strong staining in normals that very nicely 

stain the ducts. In stark contrast, staining is either very weak or non-existent in the 

TNBC samples. This IHC data is also consistent with the RNA gene expression 

datasets. 
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significance of differentially expressed genes. The volcano plot identified a set of highly 

upregulated RTKs including PTK7, TIE1, CSF1R, EPHB4, and EPHB6. 

Our top hit, PTK7 (protein tyrosine kinase 7), was first discovered as CCK-4 

(colon carcinoma kinase 4) as a protein that was expressed in colon carcinoma but not 

in normal colon tissue [95]. Interestingly, it has been previously observed using gene 

expression microarrays to be upregulated in ER-negative cancers, and siRNA 

knockdown in TNBC cell lines causes inhibition of proliferation which does not occur in 

ER-positive cell lines [96]. In addition to this single paper in breast cancer, siRNA 

inhibition of PTK7 in HCT116 colon carcinoma cells resulted in inhibition of cell 

proliferation and induction of apoptosis [97]. Work in acute myleogenous leukemia (AML)  

has shown that PTK7 promotes anthracyline resistance and PTK7-positive AML patients 

have a decreased disease free survival [98]. PTK7 also plays a major role in 

development as a key regulator of planar cell polarity in epithelial tissues [99]. Mouse 

embryos that contained a mutation of PTK7 resulted in the failure of neural tube closure 

and defects in heart, lung, and ear development [100]. Because of PTK7’s roles in 

embryonic development, we were concerned that its overexpression maybe an artifact of 

TNBCs deriving from normal breast luminal progenitor cells. As mentioned in Section 

1.1.2, recent data has demonstrated that BRCA1 basal-like breast cancers are most 

likely derived from breast luminal progenitor cells [36, 37]. To assess this, we used 

publicly available data from Lim, et al.[36] and determined whether PTK7 had any 

differential expression between luminal progenitors and mature luminal cells. We found 

no difference in expression of PTK7 between the two cell types (p=0.34). To further 

validate the importance of PTK7, we wanted to determine if PTK7 was overexpressed in 

TNBC when compared to other subtypes of breast cancer. Using recent publically 

available data from the Perou lab [101], PTK7 was indeed significantly overexpressed in 

basal breast cancer compared to the other intrinsic subtypes (2.5-fold, FDR<0.001). 
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Figure 26. Volcano plot of significant receptor tyrosine kinases (RTKs). RTKs are critical 

proteins for the initiation of signaling cascades leading to cell proliferation and survival. 

RTKs hold the potential to be potent therapeutic targets. This volcano plot identifies 

significant RTKs by considering both fold change and statistical significance of 

differentially expressed genes. In our dataset, 32 RTKs are expressed in these tissues. 

This analysis reveals PTK7, TIE1, CSF1R, EPHB4, & EPHB6 as significant RTKs 

overexpressed in TNBC. PTK7 is extensively explained in the text. In addition, TIE1 is 

an RTK well known for its role in angiogenesis and expression in endothelial cells, but it 

has also been demonstrated to be overexpressed in breast cancers and not in 

corresponding normal breast tissues [102]. CSF1R has also been previously 

demonstrated to be expressed in breast cancer [103], and is inhibited by Sunitinib [104], 

which has potentially increased activity in TNBC patients [16]. The Ephrin B receptors, 

EPHB4 & EPHB6, are both known to be expressed in breast cancer, with EPHB4 

important for breast cancer cell survival [105], and EPHB6 has interestingly been shown 

to decrease invasiveness in TNBC cell lines [106].  
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PTK7 was also overexpressed in HER2+ positive breast cancers (2.4-fold, FDR<0.001). 

An interesting aspect of PTK7 is that there is no known ligand of PTK7 and its kinase 

domain is catalytically inactive [97], yet there is no doubt that PTK7 is actively involved in 

many important cellular processes. This is very analogous to HER3 which lacks a 

catalytically active domain but partners with HER2 to transduce signaling. All these data 

combined reflects a strong rationale for targeting PTK7 in TNBC. 

 We also then performed a similar analysis looking at all kinases. The most 

statistically significant (and most overexpressed) kinase was NEK2 (NIMA-related kinase 

2). NEK2 is a serine/threonine protein kinase involved in centrosome separation during 

mitotic entry. The expression of NEK2 is 34-fold overexpressed in TNBC vs. normal and 

is highly statistically significant (p = 1.25x10-6). Previous studies have shown that siRNA 

knockdown of NEK2 in breast cancer cell lines inhibits cell growth, colony formation, and 

in-vitro invasiveness [107]. In a breast cancer cell line, overexpression of NEK2 resulted 

in chromosomal instability with aneuploidy, multinucleated cells and multiple 

centrosomes [108]. Like PTK7, NEK2 was not differentially expressed between luminal 

progenitors and mature luminal cells (p=0.13). NEK2 was also significantly 

overexpressed in basal-like breast cancer compared to other subtypes (5-fold, p<0.001). 

Its protein network as elucidated by Ingenuity Pathway Analysis is depicted in Figure 27. 

Review of the network analysis reveals involvement in several pathways including: 

centrosome duplication, cell division, MAPK pathway, among others. Because of its 

involvement and pervasive role in tumor biology, it has been proposed as a potential 

drug target in cancer [109, 110]. Based on current evidence, we also agree that NEK2 is 

a potential therapeutic target for TNBC. 

In a further in-depth search for novel therapeutic targets, we sought to take 

advantage of our group’s expertise in computational in-silico drug discovery of enzymatic  

proteins. To perform this search we undertook a comprehensive approach to target  
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Figure 27. The NEK2 interaction network. This network was elucidated by Ingenuity 

Pathway analysis. The red color indicated up-regulation in our next-generation 

sequencing dataset and those proteins in white indicate that they were not differentially 

expressed in our RNA-seq dataset.  
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identification which includes: differential RNA-seq expression data, pathway analysis,  

information from the Protein Data Bank, and existing literature. With this approach, we 

have identified 25 high-priority targets to further characterize for therapeutic 

development. Of importance, none of these targets have been pursued in previous 

clinical trials in cancer. We first started with 7,140 genes that the RNA-seq identified as 

being significantly differentially expressed between TNBC and normal (FDR<0.01). From 

these, 1,694 genes were upregulated and contained a 3D protein structure in the Protein 

Data Bank that is suitable for in-silico molecular docking. Of the 1,694, we narrowed our 

focus on enzymes, as these proteins have the best likelihood of success to find a small 

molecule inhibitor with in-silico molecular docking. This is because an enzyme with a 3D 

structure has a defined active site, and many cases additional allosteric binding sites 

that can assist with making our compounds more selective. By focusing on enzymes, 

this narrowed our list to 687 proteins. Of these, 60 already had prior inhibitors that have 

been developed and tested in clinical trial, and were thus excluded to avoid a replicative 

effort. This left a list of 626 potential targets. We then analyzed the gene expression data 

for the 626 targets, and set an exclusion criteria, where the expression of the target has 

to be low in the normal samples (defined as average RPKM<2) and whose expression is 

considerably higher in the TNBC samples (defined by statistical comparison). We 

believe this filter enables the target to be highly specific for TNBC. With this filter, the list 

was narrowed to 268 potential targets. We then rank ordered the list by statistical p-

value and fold change, and performed pathway analysis and literature searches to 

determine the function and significance of the target in tumor biology. In this manual 

search, we excluded genes that are well known to be pro-apoptotic, and we also 

excluded targets that were already the focus of extensive preclinical efforts, though not 

yet tested in clinical trial. From this effort we identified the 25 targets listed in Table 7. 

This list represent a diverse set of enzymatic targets with nuclear, cytoplasmic, and 
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Table 7. 25 TNBC therapeutic targets identified by RNA-Seq.These  targets were 

chosen from analysis of next-generation RNA seq data, pathway analysis, information 

from the Protein Data Bank, and literature searching. In the case of all targets, the 

expression of the gene is low in normal samples, and is considerably higher in TNBC 

samples helping to enforce TNBC specific targets. 
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plasma membrane co-localization. The targets include genes involved in DNA 

replication, cell cycle, cytoskeleton regulation, and cell survival. These targets are now 

being actively pursued by our group using siRNA knockdown to see their phenotypic 

effect on TNBC and normal cell lines. Knockdown of targets that show an anti-tumor 

response are then pursued using in-silico molecular docking to identify small molecular 

inhibitors that will be used for further in-vitro testing. 
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2.3.3 Profiling and differential expression of noncoding RNAs 

A significant advantage of RNA-seq is the ability to profile a diverse species of 

RNA including non-coding RNAs. We interrogated reads mapping to known precursor 

miRNAs (pre-miRNAs), lincRNAs, and ultra conserved regions (UCRs). While miRNAs 

are well known as master RNA regulators, lincRNAs and UCRs have recently joined the 

cadre of non-coding RNAs species that elicit regulatory function [111, 112]. Statistical 

comparison of 705 pre-miRNAs revealed 22 differentially expressed pre-miRNAs at a 

FDR < 0.01 (Appendix 2). Recently, mir-146a and mir-146b have been shown to 

downregulate the expression of BRCA1 [113]. In our dataset, miR-146a was upregulated 

in TNBCs 2.6-fold compared to normal (p=0.046). In addition, we observed several 

differentially expressed microRNAs involved in angiogenesis. Specifically, miR-93 and -

210 (both upregulated) are known to be inducible by hypoxia [114]; miR-31 

(upregulated) is a HIF-1a inducer [115]; and miR-205 (downregulated), is an inhibitor of 

VEGF [116]. We also observed significant upregulation of miR-221&-222 which are 

known to negatively regulate ER expression in breast cancer cell lines [117]. Finally, 

known oncogenic miRNAs including miR-16, miR-21, and miR-31 were also upregulated 

(Appendix 2). Several of our most significant pre-miRNAs have no prior literature in 

cancer. This underscores the enigmatic role of pre-miRNAs in TNBC biological 

processes. 

LincRNAs, such as Xist and HOTAIR, have been recently reported to play a 

major role in chromatin regulation and gene expression [85, 111]. Khalil et. al. has 

recently annotated the exons of lincRNAs in 6 human cell lines [85]. Using their 

annotation of 4860 lincRNA exons, we sought to determine if lincRNA expression is also 

dysregulated in TNBC. In our analysis, we report 109 lincRNA exons that are 

differentially expressed at an FDR < 0.01 (Appendix 2). An interesting first-pass 

observation of the data is the generalized down-regulation of statistically significant 



81 
 

lincRNAs. 75/109 of the top lincRNAs are downregulated. The most significantly 

downregualted lincRNA is XIST located at chrX:72,957,220-72,989,313 (Appendix 2). 

We also analyzed non-coding RNAs to identify expression differences in UCRs. UCRs 

are areas of the genome at a minimum of 200bp where there is 100% conservation of 

the sequence between human, rat, and mouse. These areas have been found to have 

functional significance in cancer [112]. In our analysis, we searched 481 known UCRs 

and found 15 to be differentially expressed at FDR < 0.01 (Appendix 2). One interesting 

UCR, uc.63, has been recently shown to be induced by hypoxia (personal 

communication, M. Ivan). The functions elucidated by the differentially expressed 

lincRNAs and UCRs is largely unknown, but these data suggest a possible role in TNBC 

biology. Future investigation will determine their contributions to TNBC. 
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2.3.4 Novel transcribed regions 

Previous literature has reported the presence of pervasive transcription across 

the genome, particularly in intergenic regions [118]. In an attempt to understand the 

presence and possible function of novel transcribed regions (NTR) in TNBC, we 

analyzed the entire genome for areas of significant expression for which there is no 

known annotated gene. We chose areas of novel transcription with the following criteria: 

1) the NTR had to be a minimum of 10,000bp away from the nearest RefSeq gene to 

reduce the possibility of detection of a novel exon to a known gene, 2) the NTR must be 

at least 50bp long, 3) there must be at least 20 supporting reads mapping to the NTR. 

We then further filtered out loci that overlapped known miRNAs, lincRNAs, UCRs, 

snoRNAs, snRNAs, scRNAs, rRNAs, tRNAs, and mtRNAs. Regions that satisfied these 

criteria were then analyzed to determine start and end coordinates of each novel 

transcript in order to determine RPKM values for each NTR. This method of determining 

region boundaries is not the optimal method (compared to traditional cloning methods), 

but provides an initial screen for differential expression. In total we report 43,351 NTRs  

(Appendix 2). Using 1-way ANOVA, we then compared the gene expression values of 

the 10 TNBC tumors and 10 normals and identified 6,408 differentially expressed NTRs 

between TNBC and normal at an FDR < 0.01 (Appendix 2). To further support the 

presence of the NTRs, we cross-referenced the 43,351 NTRs against the AceView 

database [119], which is a comprehensive, non-redundant database of mRNA 

sequences including EST libraries. 17,082 NTRs overlapped AceView sequences 

lending biological evidence to these NTRs (Appendix 2). Of further note, PCA of NTRs 

revealed a separation of TNBC and normal samples indicating that these regions alone 

can define the disease phenotype (Figure 28). The function of these NTRs is still to be 

determined, but the data suggests a large undiscovered territory of transcribed RNAs 

with no known function that may be implicated in TNBC.  
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Figure 28. PCA of Novel Transcribed Regions. PCA of log2 transformed RPKM data 

shows separation of TNBC and normal sample phenotypes using novel transcribed 

regions. The separation is quite stark, in particular, when considering that this separation 

is independent of all known coding and non-coding genes. 
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2.4 Discussion  

 

In this chapter, we have described the application of next-generation whole 

transcriptome sequencing in TNBC and normal breast to study differential gene 

expression. A critical strength of this study includes the use of microdissected ductal 

epithelium from normal breast tissue as a comparator. RNA-seq is a powerful technology 

whose strength in accuracy over traditional microarrays, and the ability to survey the 

entire transcriptome with no a priori gene selection suits it as the optimal platform for this 

study.  

In our analysis, over 7200 known genes were found to be differentially expressed 

between TNBC and normal breast tissue. Two major themes were illustrated by this 

data. The first major theme revolves around differentially expressed genes associated 

with BRCA or its pathway. Many of these genes were highly significant and pervasive 

through several of our analyses. The most striking illustration was the observation that 

our most statistically significant gene was COBRA1 (cofactor of BRCA1), a gene that 

plays a dual role in both inhibiting estrogen receptor activity, and modulating many 

genes that are also regulated by BRCA1 [86, 88]. This gene is quite fitting to have the 

top spot with TNBCs being negative for estrogen receptor coupled with the well known 

link between BRCA1 mutations and development of TNBC. We also observed several 

genes in the BRCA DNA repair pathway that were upregulated. Inhibitors of several of 

these genes including CHK1, CHK2, and PLK1 are all in clinical trial. This suggests that 

the targeted inhibition of DNA repair proteins and the “synthetic lethal” approach led by 

Ashworth and colleagues may not be limited to PARP only. Upcoming clinical trials will 

soon tell whether targeted agents against DNA repair proteins, particularly when 

administered with DNA damaging agents, are an effective means of treating TNBC. 

Further we observed upregulation of a microRNA that has been very recently implicated 
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in downregulating BRCA1 [113]. While previous work has shown that mutations, loss of 

heterozygosity, and methylation can all lead to downregulation of BRCA1 in TNBC, 

noncoding RNAs are now new players. The role of noncoding RNAs in BRCA1 

regulation is still largely unknown, but it could be speculated that other microRNAs 

(either direct or indirect) or other forms of non-coding regulation including lincRNAs 

could be implicated.  

The second major theme demonstrated that using normal ductal epithelium from 

healthy volunteers is an optimal control for discovering therapeutic targets in TNBC. This 

was most strikingly illustrated by the fact that some genes previously reported to be 

over-expressed in TNBC by microarray (e.g. EGFR and c-kit) were not upregulated in 

this study [29, 120]. The lack of transcriptional upregulation (compared with normal 

breast) might explain the disappointing outcomes to several clinical trials implementing 

agents designed to target these pathways [11-14]. In contradistinction, the only positive 

randomized clinical trial to date testing a targeted agent in an enriched triple negative 

population used Iniparib (BSI-201), a PARP inhibitor [25]. The target for BSI-201 

(PARP1/2) is 3-fold over expressed in TNBC compared to normal in our study (Figure 

23). Further, we identified additional targets that will serve as the basis for future drug 

discovery work. This included PTK7, our most significant receptor tyrosine kinase, a 

developmental gene whose knockdown by siRNAs has previously demonstrated 

inhibition of proliferation only in ER-negative cells and not ER-positive [96]. Another 

target, NEK2, our most differentially expressed kinase, has also had extensive 

preclinical work to demonstrate that inhibition has a significant anti-tumor effect. Some 

very recent work by our group has developed small molecule inhibitors of NEK2 that 

when tested in-vitro inhibited the proliferation of cells at the micromolar level. These data 

are quite preliminary, but it does begin to demonstrate the ability of comparing TNBC to 

normal breast to identify actionable targets. All together, these data imply that 
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developing drugs against targets that are actually differentially expressed when 

compared to “true normal” breast tissue is of high value.  

In addition to the two major themes, the power of next-generation sequencing is 

highly leveraged in this study through the profiling of non-coding RNAs and novel 

transcribed regions. These areas are of special interest as they have the potential to 

elucidate previously undiscovered loci important in tumorigenesis, and may ultimately 

provide insight into novel therapeutic targets. Indeed several microRNAs were detected 

that upregulate angiogenesis, and anti-angiogenic therapy seems to be moderately 

effective in TNBC patients. A large limitation to noncoding RNA analyses is the limited 

knowledge of the function of many of these noncoding RNAs, especially lincRNAs and 

UCRs. While we are able to detect them, this limited knowledge makes it difficult to 

associate lincRNAs and UCRs with the functions of individual coding genes. In the 

original paper that described lincRNAs, the group used a “guilt by association” method 

which involved statistical correlation of the expression of lincRNAs with protein coding 

genes followed by gene set enrichment analysis and hierarchical clustering in order to 

begin deciphering a putative function [111]. This method identified that lincRNAs have a 

role in modulating many cancer associated gene sets including: cell cycle regulation, 

proliferation, and chromatin remodelling complexes. Unfortunately this method does not 

provide evidence for how these lincRNAs work directly with cancer genes, and thus 

remains solely as a means to understand this RNA species globally.  

In conclusion this chapter presents a comprehensive and novel characterization 

of the differential expression of a lethal disease with no FDA-approved targeted 

therapies using cutting edge next-generation sequencing technology. Through the use of 

tissue controls from healthy pre-menopausal women we describe the landscape of 

transcriptional perturbations that comprise TNBC. The differential biology outlined here 

may now be used as a framework for the future development of targeted therapies.  
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Chapter 3: Detection of mutations in TNBC from mapped RNA-seq data 

 

3.1 Introduction 

 

 One of the most powerful aspects of next-generation RNA sequencing outside of 

gene expression is the ability to interrogate the sequence itself. This ability is one of the 

significant advantages of RNA-seq over traditional gene expression microarrays. Some 

recent examples of the successful application of calling mutations from RNA-seq have 

come from ovarian cancer. Two articles published in the New England Journal of 

Medicine, both used RNA-seq to call highly recurrent mutations in the FOXL2 gene and 

the ARID1A gene in Granulosa-Cell and Endometriosis-Associated ovarian carcinomas, 

respectively [71, 72]. Another publication from the same group also used RNA-seq to 

identify mutational differences from a metastatsis of a lobular breast cancer and 

compared these mutations to the primary cancer that occurred 9 years earlier [121].  

 As mentioned in Section 1.3.1, there is still a paucity of knowledge in regards to 

the mutational profile of TNBC. In regards to inherited mutations, it is well known that 

BRCA1 mutations predispose women to developing TNBC, but these mutations 

represent only a minority of all TNBC cases [41]. Also, because not all BRCA1 mutation 

carriers develop breast cancer, it has led to speculation of potential modifier genes that 

increase the risk of breast cancer of breast cancer for BRCA1 carriers. A recent study 

tested this hypothesis by performing a Genome Wide Association Study (GWAS) of 

BRCA1 carriers with breast cancer compared to carriers with no breast cancer diagnosis 

[122]. This study identified five SNPs on chr19p13 with two of them increasing risk and 

three of them decreasing risk for development of breast cancer. When the same five 

SNPs were applied to a cohort of triple-negative breast cancer and controls, the same 

SNPs correlated with increased or decreased risk. While these findings were highly 
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statistically significant, the highest odds ratio for increased risk was 1.28, and the lowest 

odds ratio for decreased risk was 0.79, demonstrating the very modest effect of these 

SNPs as genetic modifiers [122]. Epidemiological data also supports the premise that 

inherited variation can play a role in TNBC. The observation that TNBC has an earlier 

age of onset coupled with its greater frequency in women of African descent are classic 

clues for the potential presence of other germline mutations. Technologies that can 

survey the entire genome, like next-generation sequencing, will be able to tease out 

novel germline mutations in sporadic TNBC if they are present. 

In regards to somatic mutations, p53 has dominated the mutational landscape 

[45], with mutations in Rb and ERBB4 also reported to a lesser extent [46-48]. Also, a 

recent study looking at somatic mutations in a variety of cancers, also identified an 

abundance of TP53 mutations in TNBC (19/53), but also somatic mutations in PIK3CA 

(9/53) [123]. Outside of these genes, somatic mutations in TNBC tend to be patient 

specific [45, 49, 123]. This is best illustrated in the context of gene fusions, where low-

coverage next-generation sequencing of DNA illustrated the presence of gene fusions in 

TNBC, but none were recurrent [49]. Whether gene fusions in TNBC are involved in 

causation, or are merely by-products of deficient DNA repair coupled with highly mitotic 

cells is still to be determined.  

With the need for a complete understanding of the genomic perturbations that 

cause cancer, several large consortia are now actively working to identify the mutational 

landscape of all common malignancies. Without a doubt, breast cancer (and specifically 

TNBC) is a major target for all of them. These groups include the ICGC (International 

Cancer Genome Consortium), TCGA (The Cancer Genome Atlas), and METABRIC 

(Molecular Taxonomy of Breast Cancer International Consortium). These groups 

combined will sequence the genomes and transcriptomes of thousands of breast 

cancers and matched normal tissues, including many TNBCs. But as with all large 
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consortia, some pitfalls exist. As of April 2011, neither the ICGC nor the TCGA have 

released any breast cancer sequencing data nor do their databases indicate when it will 

occur. METABRIC does not maintain an online accessible database. In addition to 

logistics, another major pitfall of the consortia is that the designs of these studies are 

primarily driven to identify somatic mutations and do not include germline. The general 

workflow is to sequence both the tumor and matching normal, identify all genetic 

variation in both, and then subtract the variation found in the normal from the tumor. This 

in essence subtracts any potential germline causative variants. Whether these groups 

will eventually compare cancer genomes to a large group of normal genomes, such as 

the 1000 genomes project, is unknown. Also, as already illustrated in the previous 

chapter, the use of matched normal tissue (usually normal adjacent), for RNA-seq by the 

large consortia most likely will be fraught with gene expression changes that do not 

reflect the use of a truly normal control. While problems do exist with the major 

consortia, it is well accepted that a comprehensive compendia of the mutations that 

cause cancer will lead to a better approach to treating disease. 

With the lack of a comprehensive database of mutation data in TNBC, along with 

the previously mentioned success of determining mutations from RNA-seq data in 

ovarian and lobular breast cancers, we sought to apply the same approach to our data of 

TNBC and normal. Using newer algorithms and parsing pipelines developed in-house, 

we sought to identify point mutations, small insertions/deletions, and gene fusions that 

could give us clues to the causation of this disease.  

 

 

 

 

 



90 
 

3.2 Materials and methods 

 

Bioinformatic detection and validation of point mutations 

 In order to identify point mutations from mapped RNA-seq data, we took a 

multistep approach that allowed for mutations to be called with high statistical 

confidence. We then developed a pipeline that also allowed us to remove known 

common genetic variation. (Extensive details are provided in Appendix 1). Starting with 

the mapped RNA-seq data, mutations were called using the SNVMix2 algorithm which is 

designed to call mutations specifically from RNA-seq data [79]. As illustrated in Section 

1.3.3, there is particular difficulty of calling mutations from RNA-seq data as the ability to 

call mutations at any given region of the genome is proportional to the RNA expression 

of that region. This means that algorithms that assume a uniform coverage, which is 

commonly used for DNA sequencing studies, cannot be used. SNVMix2 accounts for 

this non-uniform coverage by using a probabilistic model which accounts for both the 

number of reads that cover a variant and the base and mapping qualities of the reads 

that cover the variant. While SNVMix2 is a powerful algorithm that has been used 

successfully in several cancer RNA-seq studies, our first use of the algorithm with 

default parameters yielded a slew of false positives. This was evidenced by the fact that 

most of the variants were not in the NCBI dbSNP database as would be expected. After 

many iterations, we finally tuned the algorithm such that the majority of the single 

nucleotide variants called were true positives as evidence by the majority of the hits 

being in the dbSNP database. This included setting quality thresholds for the base and 

mapping qualities to a PHRED score of 20, and also requiring the algorithm to consider 

heterozygous and homozygous evidence for a variant separately versus in a combined 

fashion. Also setting the statistical probability threshold to 90% for any given 

heterozygous or homozygous call helped reduce the false positive rate tremendously. 
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The mutations for each sample (10 TNBCs and 10 normals) were then called and 

independently run through a custom made pipeline to discover novel mutations in coding 

regions (Figure 29). To quickly annotate each variant, we used the Annovar software 

which allowed for a quick identification of whether a variant was in a coding region, and if 

the variant was synonymous, nonsynonymous, stop gain, or stop loss [124]. The 

synonymous variation was removed, and the rest of the variants were then subjected to 

several rounds of filtering to remove known genetic variation. This included filtering out 

variation identified through the 1000 genomes projects, specifically data from the 

Caucasian, Yoruban, Japanese, and Chinese populations. Variants that remained were 

then filtered for variants present in dbSNP (version 130). After all the variants were 

called and filtered for the 10 TNBCs and 10 Normals, the data was collated into a single 

master file of mutations. This master file was then parsed to look for mutations that were 

recurrent at the exact same base position, and to look for genes that were recurrently 

mutated across samples but not the same base position. Mutated genes were also put 

into Ingenuity Pathway Analysis in order to discover pathways that are mutated as a 

third level of processing above recurrent base mutations and cross-gene mutations.  

 Mutations of interest were then individually assessed by manually inspecting 

each read that covered a mutation using the Integrative Genomics Viewer [78]. As the 

PCR during library preparation can introduce mutations, a visual inspection can catch 

these errors by observing reads where the mutation occurs on reads that contain the 

same exact start site (known in the field as PCR duplicates). Those mutations that were 

called solely on evidence from PCR duplicates were not considered. In essence, the 

read support for any given mutation had to have two unique start sites in order to be 

considered. Once the visual inspection was complete, validation of mutations were 

carried out by designing PCR primers that flanked the mutation. PCR reactions were 

setup consisting of Amplitaq Gold 360 Master Mix (Applied Biosystems), 200nM of each 
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Figure 29. Flow diagram of point mutation calling and filtering pipeline. The pipeline 

begins with mapped RNA-seq data followed by calling of variants with SNVMix2, 

followed by annotating with Annovar, and then filtering for variants that occur in the 1000 

genomes project, dbSNP, and in the normal samples. Variants are then searched for 

recurrence at the same position, in the same gene, or in the same pathway. Mutations 

are then subjected to manual inspection and then validated by PCR and sequencing. 
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primer (IDT, Coralville, IA), and 5ng of DNA (or cDNA). A gradient PCR was performed 

followed by agarose gel electrophoresis in order to identify the optimal annealing 

temperature that creates a single band. The optimized PCR product was then 

sequenced using capillary sequencing at the Indiana University DNA Sequencing Core 

Facility. Analysis of the capillary sequencing either validated or invalidated the presence 

of the mutation.  

 

Bioinformatic detection of small insertions and deletions 

 To detect small insertions and deletions (indels) requires special processing of 

the mapped RNA-seq data. As described in Section 1.3.3, mapped reads have to be re-

aligned in order to do a gapped alignment which will tolerate the presence of the small 

indels. In order to do this, we used a custom modified pipeline of the ABI BioScope 

software. This is not a standardized pipeline for the software and requires different input 

files and commands to run. Very briefly and simply, intermediate files that corresponded 

to the raw mapping of the reads to the genome along with the quality files and other 

inputs were locally re-aligned to the genome using a gapped alignment feature in 

BioScope. The local realignment allowed for insertions up to 3bp and deletions up to 

11bp to be detected. After alignment, the output mapping files were converted to the 

standard BAM format. Small indels were then called from the BAM file and outputted into 

a highly annotated text file containing all the information available for the support of an 

indel (Appendix 1). Small indels were then annotated using the same pipeline used for 

point mutations except the software annotates the indel as either frameshift insertion, 

frameshift deletion, nonframeshift insertion, nonframeshift deletion, stopgain, or stoploss. 

The indels were then parsed for recurrent mutations at the same base positions, 

recurrent mutations occurring in the same gene but not the same positions, and across a 

pathway.  
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Bioinformatic detection and validation of gene fusions 

In order to determine the presence of gene fusions from 50bp fragment reads, 

we searched for reads spanning exons from two different genes. Only reads that partially 

mapped to the human genome in the original read mapping were used for gene fusion 

discovery. To reduce the search space for gene fusion junctions, only the ends of known 

exons derived from the RefSeq database were considered. Using the SASR Junction 

Finder (a pipeline of ABI BioScope v1.2.1), we identified putative fusion junctions that 

had at least 2 supporting reads with 2 unique starting points (2 unique reads). To filter 

for false positives, any candidate fusion must only appear in the TNBC samples and not 

in the normals. We further filtered the output by removing any gene & exon involved in 

more than 2 fusions as these are most likely false positives. In our final list, we 

considered only fusions that had at least 3 supporting reads (with at least 2 unique 

starting points).  

Primers were designed against the exons that were bioinformatically deduced to 

be involved in a fusion junction. The RNA from the 10 sequenced TNBC samples was 

reverse transcribed using the High Capacity RNA-to-cDNA kit (Applied Biosystems). 

PCR reactions were then setup consisting of Amplitaq Gold 360 Master Mix (Applied 

Biosystems), 200nM of each primer (IDT, Coralville, IA), and 10ng of cDNA. PCR 

products were then visualized by agarose gel electrophoresis to determine the formation 

of a PCR product in the expected sample. 
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3.3 Results 

 

3.3.1 Point mutations 

 In interrogating point mutations from the data, we took a bottom-up approach that 

started with analyzing first for recurrent mutations that occurred at the same base pair in 

the same gene. We then looked for recurrent mutations in the same gene but not the 

same base pair. This was the followed by looking for mutations that occurred in separate 

genes but in the same pathway. 

 In our analysis of genes with recurrent mutations at the same base pair, our best 

hit was in PARP4 (also known as vPARP). PARP4 is similar to PARP1 in that it can 

catalyze a poly(ADP-ribosyl)ation reaction, but it does not bind DNA directly [125]. It has 

also been shown to be associated with telomerase activity by interacting with 

telomerase-associated protein 1 (TEP1) [126]. PARP4 knockout mice are susceptible to 

chemical induced carcinogenesis [127]. It is known to be a component of the Major Vault 

Protein (MVP) complex which includes MVP, TEP1, and PARP4. The MVP complex is 

an extremely large (12.9 mDa) protein important in nuclear-cytoplasmic transport, signal 

transduction, and immune responses [128]. Interestingly, MVP has also been implicated 

in chemoresistance in cervical cancer [129], and is a significant prognostic factor in 

ovarian cancer, melanoma, and osteosarcoma [130]. Another study also showed that 

overexpression of MVP may suppress DNA repair by non-homologous end joining by 

downregulating Ku70/80 [131].  

 In our analysis, we identified an amino acid changing mutation in PARP4 at 

chr13:23973960 that converted the 49th amino acid from Isoleucine to Valine in exon 3. 

At first, this conversion seems indolent as the mutation converts a branched chain amino 

acid to another branched amino acid. But two aspects of this mutation are interesting. 

First, using PolyPhen, a popular bioinformatic tool to assess the effect of single basepair 
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changes on protein structure, predicted this change to be possibly damaging. Also the 

location of this mutation occurs in the BRCA1 carboxy-terminal domain (BRCT) a 

domain similar to the c-terminus of BRCA1 which mediates phospho-protein binding 

[132]. If validated to be recurrent in a larger sample set, studies to determine its effect on 

mediating DNA repair, or sensitivity to DNA damaging agents would be warranted. 

 In a second analysis of mutations, we looked for mutations in the same gene but 

not necessarily the same base pair. We identified FAT1 (FAT tumor suppressor homolog 

1) has having strong bioinformatic evidence for recurrent mutations. FAT1 is a tumor 

suppressor whose knockout causes excessive cell proliferation in drosophila 

[133].Homozygous deletions of FAT1 have been detected in 80% of primary oral 

cancers by CGH [134]. A survey of 326 breast cancers showed expression of FAT1 

across tumor grades, but with grade 3 tumors have significantly less FAT1 compared to 

Grade 1. TNBCs are almost all Grade 3 tumors. 

 In our analysis we validated two mutations (one mutation in each of two samples) 

in FAT1. One at chr4:187821524 which created a Serine 1168 to Leucine change in 

exon 3. Also another at chr4:187775265 which created a Lysine 2988 to Isoleucine 

change. While point mutations in FAT1 in other breast cancers have not been reported, 

a search of the COSMIC database, (a comprehensive database of all known somatic 

mutations) revealed 12 reported somatic mutations for FAT1 

(www.sanger.ac.uk/genetics/CGP/cosmic/) [135-137]. 10 of the 12 were in ovarian 

carcinomas. This data along with the previous report of deletions in oral cancers shows 

that FAT1 seems to be a repetitively mutated gene in multiple cancers. 

 In a third analysis, we analyzed the mutations to determine if a particular 

pathway was overrepresented using Ingenuity Pathway Analysis. In our analysis, our top 

hit was the BRCA1 pathway. This pathway is dedicated to genes involved with BRCA1 

and its upstream and downstream effectors. We validated mutations in 5 genes:  

http://www.sanger.ac.uk/genetics/CGP/cosmic/�
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Figure 30. Point mutations in the BRCA1 pathway. Genes in red indicate those that 

have validated mutations in their coding regions. For this figure, due to genes having 

different gene symbols for the same gene, SWI/SNF = SMARCA4, and p21CIP21 = 

CDKN1A. BRCA1 is also shown mutated in this figure because of a detected indel in a 

sample described in the next section. 
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FANCD2, E2F3, CDKN1A, SMARCA4, and TP53 (Figure 30). In the figure BRCA1 is 

also shown to be mutated as this was detected in an indel analysis as will be explained 

in the next section. The data suggests a “BRCAness” mutation pattern, where genes that 

are involved with BRCA1 are mutated, but not necessarily the gene itself.  
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3.3.2 Small insertions and deletions 

 Small indels are potent mutations secondary to their ability to induce a frameshift 

in the reading frame of coding genes. Their deleterious nature is well known in cancer. 

For example, the overwhelming majority of known mutations in BRCA1 and BRCA2 are 

small indels. Also, the recent work identifying recurrent mutations of the ARID1A gene in 

Endometriosis-associated ovarian carcinomas using RNA-seq revealed that the majority 

of mutations are also indels. Even though deleterious point mutations do occur in 

BRCA1/2 and ARID1A, their prevalence is considerably less. 

 Because the majority of BRCA1 mutations are small indels, we scoured the indel 

data to determine if any of our samples contained known mutations for BRCA1. 

Interestingly, one of our samples, has a single base insertion at amino acid 1450, a 

known mutated site for BRCA1. What was more intriguing, that upon inspection of the 

gene expression PCA from Section 2.3.2, this sample is an outlier based on gene 

expression compared to the other samples (Figure 31). While conclusions from one 

sample cannot be made, it is nonetheless provocative for the lone outlier sample in our 

dataset to be mutated for BRCA1, and suggests a possible effect of BRCA1 mutations 

on the global gene expression profile. 

  



100 
 

 

Figure 31. PCA of TNBC and normal samples with highlighted BRCA1 mutant sample. 

The PCA demonstrates that the BRCA1 mutated sample is an outlier when compared to 

other sporadic TNBCs. While conclusions cannot be made from one sample, the 

difference in gene expression profile between this BRCA1 mutated sample and the 

others suggests a possible effect on global gene expression. 
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3.3.3 Gene fusions 

It is well known that translocations in DNA can result in the production of 

oncogenic fusions proteins [138]. Work by Maher et al. at has demonstrated the utility of 

using RNA-seq to discover de novo expressed fusion transcripts [69, 70]. We used a 

custom developed bioinformatic method known as the SASR (Suffix Array Single Read) 

which is designed to identify gene fusions from 50bp colorspace reads. By using reads 

that partially map to the human genome as input, the SASR determined reads that span 

exon junctions derived from two different genes (for SASR details, see Appendix 1). 

Candidate fusions from the SASR were then sorted by confidence and high confidence 

calls were subsequently validated by RT-PCR. In Table 8, we report 6 validated gene 

fusions identified in our dataset. 2 of 6 fusions are interchromsomal, whereas the other 4 

are intrachromosomal with the corresponding genes in close proximity. These latter 

fusions most likely represent read-through events. Of important note, each fusion was 

specific for an individual sample, and no recurring fusion was detected in multiple 

samples.  
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Table 8. Gene fusions identified from mapped RNA-seq data. Using bioinformatic 

analysis followed by PCR we identified and validated six gene fusions in our TNBC 

samples. None of our gene fusions were recurrent in multiple samples. Total reads 

refers to the number of reads that spanned the fusion junction. Unique read evidence 

refers to the number of different unique sequences (or start points) that span the fusion 

junction. Notice the range in the number of reads of each fusion indicating the 

differences in the expression level of each one. 
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3.4 Discussion 

 

 The data presented in this chapter demonstrates the ability to call mutations from 

RNA-seq data that are specific for TNBC. There are some particular advantages of using 

mutations derived from RNA-Seq. 1) Using mutations only in expressed areas of the  

genome helps to focus the number of mutational candidates. Genome sequencing does 

suffer from a deluge of detecting a multitude of variants in non-expressed regions, in 

particular intergenic regions. While the data may potentially be useful, current 

bioinformatic tools to understand those variants do not currently exist. 2) With enough 

depth of sequencing, variants can be integrated with gene expression to do allele-

specific expression analysis. While this study was not designed with the depth to do this 

analysis, future studies can determine the effect of variants detected in TNBC on the 

expression of the entire gene. 3) Calling mutations from RNA-seq is cost effective [139]. 

Genome sequencing requires a considerable amount of sequencing coverage. While 

these costs have come down dramatically, running one sample for RNA-seq is still 

considerably cheaper than running one sample for whole genome sequencing. Thus, in 

a cost-restrictive environment, one gains a dual benefit in RNA-seq by obtaining 

expression and mutational data.  

In regards to the mutations detected, the point mutations and indels fit an 

evolving paradigm of a “BRCAness” pattern that goes along with the gene expression 

dysregulation from our data and others [17, 44]. Of interest, the PARP4 mutations, and 

the BRCA pathway mutations all fit with the realm of BRCA1 and DNA repair. This would 

suggest that TNBC causation could in part be a result of a combination of mutations and 

gene expression dysregulation that all revolve around BRCA1. Further, the observation 

of recurrent mutations in FAT1, a lesser known tumor suppressor, is quite interesting. 

Our data supports other reports in oral and ovarian cancers of recurrent mutations in this 
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gene [134-137]. A complete knowledge of all mutated tumor suppressors in TNBC is not 

known, but it is quite possible that FAT1 mutations could join the cadre of TP53 and Rb 

tumor suppressor mutations. Further studies identifying the genes that are dysregulated 

by introducing FAT1 mutations could provide interesting clues to understanding 

tumorigenesis of TNBC and potentially identify therapeutic targets.  

In regards to gene fusions, our data supports the work of others that no recurrent 

gene fusion in TNBC exists. While TNBC genomes are in general chaotic, thus raising 

the possibility of a recurrent fusion, it would seem that these translocations are more 

random. It could be postulated that these random gene fusions are merely by-products 

of deficient DNA repair in highly mitotic cells, and whether they confer a growth or 

survival advantage could be equally random. This would also suggest that identification 

of a critical, single fusion for drug targeting (such as that seen with imatinib for the BCR-

ABL in chronic myelogenous leukemia) is highly unlikely. Nonetheless, it also possible 

that sequencing of much larger cohorts, such as those currently being sequenced by the 

major cancer genome consortia will reveal some kind of pattern of translocations in 

TNBC.  

In summation of this chapter, RNA-seq has revealed several mutations present in 

TNBC that were not detected in normal samples or in genetic variation databases. The 

genes where these mutations occur are involved in BRCA and DNA repair, and in a 

lesser-known tumor suppressor. How these mutations play a role in TNBC causation will 

be the focus of future work utilizing this data. By understanding causation, one can hope 

it will point to proper therapeutic targeting as been recently demonstrated with PARP 

inhibition and BRCA mutations using the “synthetic lethal” approach. By integrating 

mutations with gene expression data, a process that is most capably done by next-

generation sequencing, could paint a global picture of the interplay of gene expression 

perturbations caused by germline and somatic mutations.  
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Chapter 4: Summary 

 

 Triple-negative breast cancer (TNBC) is a disease that is unfortunately defined 

by what it lacks (ER-,PR-,HER2-) versus being defined by actionable therapeutic targets. 

Data from our group and others have demonstrated that there are significant shared 

features that define TNBC as a whole, including histological features [27, 28], gene 

expression changes, and mutational patterns [45-47]. But there is also extensive 

heterogeneity. Clinically, about half of TNBC patients will experience a pathological 

complete response to neoadjuvant chemotherapy, while the other half will not [5]. In 

addition, molecular subtyping suggests that while the majority of TNBCs belong to a 

single intrinsic subtype (the “basal-like” subtype), some TNBCs will also cluster with the 

other subtypes (Luminal A and B, HER2, and Normal-like) [32]. Also, a further subset of 

the basal-like subtype, known as the claudin-low (or Basal B) subtype, has been 

identified as consisting primarily of TNBCs [30, 101]. Interestingly, a recent article by the 

group of Reis-Filho et al. have questioned the validity and accuracy of the intrinsic 

subtypes, and convincingly demonstrated a lack of reproducibility between algorithmic 

predictors [140]. Even though the intrinsic subtypes have been known for 10 years, this 

work would suggest that the ability to use microarrays to define these cancers in a way 

that is clinically applicable is still a distant reality.  

To further complicate the picture of TNBC, many of the genes that have been 

deemed to be under- or over-expressed in TNBC have been based on comparisons with 

suboptimal controls. This is well illustrated in the original paper by Perou et al. of the 

identification of the intrinsic subtypes, where the normal samples were primarily defined 

by the expression of adipose genes [29]. This suggests that the normal controls used 

were un-dissected breast tissues consisting mostly of fat. Further, data by others have 

demonstrated that suboptimal comparators such as reduction mammoplasties or 
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adjacent normal tissue is fraught with problems that include benign neoplasia and 

pathological atypia [57-60], altered gene expression [61, 62], altered epigenetic markers 

[63], and loss of heterozygosity [64, 65]. Some have recently used cell separation 

techniques to separate ductal epithelium from stroma using live fresh biopsied tissues. 

But this also can be problematic in that the very process of digesting the stroma and 

using antibodies to separate the cells (especially if the purified cells enter a culture 

environment) would most likely induce large changes in expression in possibly the same 

genes that are dysregulated in cancer (proliferation, p53, apoptosis, etc.)  

As a whole, TNBC is an undefined cancer who changes in gene expression and 

mutational profile from normal breast is not understood. This problem was the primer for 

the utilization of a powerful technology, next-generation whole transcriptome 

sequencing, to perform the most comprehensive comparison to date of the gene 

expression changes that occur between TNBC and normal breast. This comparison to 

normal breast was made possible by the Susan G. Komen Tissue Bank at the Indiana 

University Simon Cancer Center, which allowed us to obtain microdissected ductal 

epithelium from healthy volunteers as our normal control. While it was a laborious effort 

to tediously microdissect the frozen normal tissues for the epithelium, its results provided 

a genuine comparator to better understand the expression perturbations that comprises 

TNBC.  

Using RNA-seq, we identified large sets of coding and non-coding RNAs that 

differentiate TNBC from normal breast. Genes involved with BRCA1 and DNA repair 

were highly present. As the link between BRCA1 mutations and development of TNBC is 

well known [19, 20], it is fitting to see genes associated with BRCA1 as some of our top 

hits. This included our #1 most differentially expressed gene COBRA1, which is a gene 

known to both downregulate estrogen receptor activity, and to regulate many genes that 

are also known to be regulated by BRCA1. As the majority of the work of the COBRA1 
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gene has been done in ER+ cancers, its role it TNBC is still undefined. We also 

observed a marked upregulation of DNA repair genes in the BRCA1 pathway and a 

microRNA known to suppress BRCA1 expression. Together, these data suggest that 

BRCA associated genes are highly implicated in sporadic TNBC, and not just in 

hereditary TNBC. 

In a further unexpected observation, we noticed a discordance between genes 

targeted in previous clinical trials and their gene expression in TNBC compared to 

normal. In particular, the EGFR and KIT receptors have been previously implicated to be 

overexpressed in TNBC [8]. But we did not see this overexpression, in particular we 

noticed a lack of differential expression of the EGFR and a downregulation of KIT. Our 

data was congruent with several clinical trials showing a lack of clinical benefit for 

inhibiting these proteins [9-14]. The bigger picture that is portrayed, is the possibility that 

needless clinical trials have been performed based on microarray data that compared 

TNBC to other breast cancer subtypes and suboptimal normal controls [19, 29, 120]. 

Even the establishment of the Translational Breast Cancer Research Consortium 

(TBCRC) and its first trial TBCRC001: EGFR inhibition with cetuximab added to 

carboplatin in triple-negative breast cancer, was based on this data (personal 

communication and [11]). To further illustrate our point, a targeted agent that has shown 

clinical activity in TNBC, Iniparib, a PARP inhibitor, was significantly overexpressed in 

TNBC compared to normal. This would suggest that genes that are significantly 

unregulated compared to a “true normal” control can be potential therapeutic targets. 

Indeed, novel therapeutic targets are desperately needed for a disease that 

preferentially affects young women and carriers a poor prognosis [1-3]. To this end, we 

performed an exhaustive search of our data and accompanying databases to identify 

prime targets. From our analysis we identified PTK7, the most significantly upregulated 

receptor tyrosine kinase in our dataset. Interestingly, previous work has already 
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demonstrated that inhibition of this protein results in diminished proliferation specifically 

for TNBC cell lines and not in ER+ cell lines [96]. This protein plays an important role in 

epithelial development [99], which is fitting for a cancer known to be derived from a 

luminal epithelial progenitor [36, 37]. We also identified NEK2, our most overexpressed 

kinase in our dataset (34-fold), a gene important in centrosome separation during cell 

division. Previous studies have shown that siRNA knockdown of NEK2 in breast cancer 

cell lines inhibits cell growth, colony formation, and in-vitro invasiveness [107]. It has 

already been suggested as a potentially new therapeutic target in cancer [109, 110], and 

to this end, our group has already begun small molecule development of NEK2 with very 

early data indicating inhibition of proliferation using two small molecules identified from a 

compound library. We also scoured our data to identify other targets based on 

differential gene expression, pathway analysis, existing literature, and ability to target 

using in-silico molecular docking. This list of 25 targets is now being evaluated using an 

RNAi approach to determine their significance as therapeutic targets in a panel of TNBC 

and normal cell lines. 

From this extensive dataset, we were also able to interrogate the noncoding 

regions of the genome. We were able to profile pre-miRNAs, lincRNAs, UCRs, and novel 

transcribed regions. From this data we observed upregulation of pre-miRNAs that 

downregulate estrogen and progesterone receptor, induce angiogenesis, and 

downregulate BRCA1. We also identified a large group of lincRNAs, UCRs, and novel 

transcribed regions that were significantly differentially expressed between TNBC and 

normal but have no known function. The NTRs were especially intriguing as they were 

able to separate the TNBC and normals by PCA, but were completely devoid of any 

known coding or noncoding genes. 

In our final analyses, we leveraged the power of next-generation RNA-

sequencing to uncover the mutational profile of TNBC. Of interest, we observed genes 
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involved in the BRCA pathway to be mutated in samples that did not have BRCA1 

mutations. Along with the gene expression data, this suggested a strong presence of a 

“BRCAness” profile underpinning TNBC. We also identified a recurrently mutated gene, 

FAT1, a novel tumor suppressor that has been previously demonstrated to be 

recurrently mutated in oral and ovarian cancers. Tumor suppressor mutations of p53 and 

Rb have dominated the landscape of TNBC, and this data suggest new players in the 

realm of mutated tumor suppressor genes. We also scanned our mutation data to 

identify gene fusions. Unfortunately, congruent with work by others [49], we did not 

identify any recurrent gene fusions in TNBC. Though, TNBC genomes tend to be quite 

chaotic, the development of gene fusions maybe a random event versus bonafide tumor 

initiators like BCR-Abl.  

In summation, this dissertation provides an in-depth analysis of the 

transcriptomes of TNBC and normal breast using next-generation sequencing 

technology. This technology was highly leveraged in this study by taking advantage of 

measuring gene expression across the genome in an accurate and digital manner. We 

were also able to interrogate the base sequence of TNBCs in order to derive mutations 

and gene fusions. The largest hurdle encountered in this study was the constant 

development and update of bioinformatic tools to analyze the data. This entailed a 

substantial learning curve to understand and use the tools effectively to arrive at the 

desired endpoints. Nonetheless, new bioinformatic tools are continually being developed 

by our group and others, and soon RNA-seq will become a mainstay for the study of 

tumor transcriptomes. With this work, it is our hope that we have laid the framework to 

not only better understand and define this devastating disease, but to eventually uncover 

the key therapeutic targets needed to discover the cure.  
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Appendix 1: Bioinformatics 

 

A1.1 Introduction 

  

The following appendix provides in detail the bioinformatic steps taken to analyze 

the RNA-seq data presented in this dissertation. The majority of the analyses are 

performed in a Linux computing environment with some analyses in Windows. Unless 

stated, the computer scripting that is presented is Linux script (Red Hat Enterprise Linux 

6, Bash Shell). This appendix will begin with the basic output files from the Applied 

Biosystems SOLiD sequencer and will walk through the software and scripts necessary 

to map sequencing data; derive gene expression (RPKM) values; perform downstream 

gene expression analyses; and detect point mutations, small indels, and gene fusions. 

Substantial effort is placed so that a well-trained bioinformatician would be able to 

exactly reproduce results given the same data, software, and computing environment. In 

regards to input files, scripting, and code, each file is explained and provided in detail. 
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A1.2 Sequencing data and read mapping 

 

A1.2.1 Output files of the Applied Biosystems SOLiD sequencer 

 As mentioned in the introduction of this dissertation, next-generation sequencers 

produce vast amounts of sequencing data. These data are normally transferred from the 

sequencer either to large external hard drives, or to servers with large storage 

capacities. The ABI SOLiD produces two important files necessary for analysis. The first 

is the .csfasta file (short for colorspace FASTA) which is a text base file containing the 

read identifier and colorspace sequence for each read (Figure 32). The second file is the 

.qual file (short for quality) which is a text based file that contains the read identifier and 

the quality score for each color called for each read (Figure 32). The size of these files 

will always be proportional to sequencing output of the machine. Also the number of files 

will also be proportional to the number of samples run per slide (flowcells). In the case of 

this project, 20 samples were run in total, where the first 10 samples were run across 

two flowcells of the first instrument run, and the second 10 samples were run across two 

flowcells of the second instrument run. For this project, it results in a total of 20 samples 

x 2 flowcells = 40 .csfasta and 40 .qual files. Each of these files ranging in the 2-5 GB in 

size. The files were labeled in accordance to the sample, for example, 

“Tumor_1_FC1.csfasta” would mean a .csfasta file corresponding to TNBC sample #1 

run on Flowcell 1. This nomenclature is used throughout the scripting examples in this 

appendix.  
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Figure 32. Example of output sequencing text files from the ABI SOLiD sequencer. (A) 

An example of 4 sequencing reads from .csfasta file. The read identifier beings with a 

carat symbol “>” followed by 4 pieces of information. The first is the panel number. Each 

slide on a SOLiD sequencer is divided into 2357 panels from which the sequencer will 

image the beads on each panel to derive the sequence. The second and third pieces of 

information are the X- and Y- coordinate of the bead on the panel. The fourth piece of 

information is the designation of the universal primer used. In the case of SOLiD RNA-

seq, “F3” refers to forward primer. Below the read identifier is the read sequence in 

colorspace. The read begins always begins with a “T” which is the last base of the P1 

adaptor. The colorspace sequence then follows (see Figure 14 for details). (B) An 

example of quality information from a .qual file of the same 4 reads shown in Panel A. A 

.qual file is identical to a .csfasta file, that instead of colorspace sequence the PHRED 

quality score is shown. The PHRED score is the negative log-odds of the base being 

incorrectly called. 
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A1.2.2 Alignment of RNA-seq reads using ABI BioScope software 

 The first step in analyzing RNA-seq data is to map (also known as alignment) the 

reads to the human genome. For this, the ABI BioScope software is used as it contains a 

specially designed module to map RNA-seq colorspace data. Some favorable features 

of this software includes: relative efficient speed of mapping, the ability to map reads 

across splice junctions, filtering of RNA transcribed from ribosomal and repetitive 

elements, detection of gene fusions, and takes advantage of increased sequence 

accuracy afforded by the use of colorspace. The RNA-seq portion (referred to as Whole 

Transcriptome) in the software uses several input files. 

 

Required reference files: 

1) Human genome (version NCBI Build 36/hg18). This was downloaded from the 

UCSC Genome Bioinformatics Site (www.genome.ucsc.edu). To prepare the 

genome, the chromFa.zip file containing hg18 is unpacked, and only the full 

chromosome contigs are merged (cat) into a single file (the other .fa files 

including *.random.fa and alternate haplotypes are excluded). In order to create a 

female genome, the Y chromosome was simply omitted. 

2) Human filter reference file. This file contains the fasta sequences of ribosomal 

RNA and repetitive elements. This file is provided by ABI. 

3) Exon file. This is a gene transfer file (.gtf) that contains the positions and 

identifying information of all known exons in the human genome. This file is used 

to create the exon-junction library for mapping splice spanning reads. This file is 

provided by ABI, but is originally derived from the Refseq (specifically refGene) 

database of the UCSC Genome Bioinformatics Site. All exons from the Y 

chromosome were omitted to create a female specific file. 

http://www.genome.ucsc.edu/�
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Required read files: 

1) .csfasta. This file corresponds to the colorspace reads. 

2) .qual. This file corresponds to the quality values of the colorspace reads. 

 

To further run BioScope, three input files (known as .ini files) are needed. These 

files give BioScope the required parameters to map the RNA-seq data. 

 

Required .ini files: 

1) global.ini . This file provides the locations of all key files needed to run the 

whole transciptome module. 

2) wt.single.read.workflow.ini . This file sets the various parameters for the 

whole transcriptome module and its various plug-ins. This includes whether 

specific plug-ins are run or not, and the number of reads needed to call 

specific events (alternative splice, fusion, etc.) (see example).  

3) analysis.plan . This file is used to initate BioScope and simply calls the 

wt.single.read.workflow.ini file. 

To run bioscope, the following usage is used: 

>nohup bioscope.sh analysis.plan & 

 

 This will initiate BioScope using the parameters in the .ini files. BioScope 

requires a minimum of 1 head node, 3 compute nodes with 16GB of RAM, 8 processors, 

and 1TB of scratch space, along with sufficient I/O between the compute nodes and the 

central storage. BioScope uses a Java Messaging Service to run jobs on a PBS/Torque 

scheduler to parallel process each .csfasta/.qual file. Briefly, BioScope will perform three 
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simultaneous mapping. This includes: mapping reads to the human genome, mapping 

reads to an exon-junction library, and mapping reads to the human filter reference. 

These three mappings are then merged into the standardized single output file (.bam, 

binary alignment mapping). The .bam files are then used in downstream applications 

including differential gene expression, discovery of novel alternative splicing, discovery 

of novel genes, gene fusions, mutation calling, etc. For more detailed information, see 

the BioScope user manual. 
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A1.2.3 Examples of required input files need for BioScope 

Filename: human_filter_reference.fa 

Description: Provides bioscope with a multi-fasta sequence file of adaptor sequences, 

ribosomal RNA, and repetitive elements in order for BioScope to remove reads deriving 

from the repetitive elements of the genome and sequencing artifact. 

Contents (significantly truncated due to length): 

>gi|124517659|ref|NR_003286.1| Homo sapiens 18S ribosomal RNA (LOC100008588) 
TACCTGGTTGATCCTGCCAGTAGCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACGCACG 
GCCGGTACAGTGAAACTGCGAATGGCTCATTAAATCAGTTATGGTTCCTTTGGTCGCTCGCTCCTCTCCT 
ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCCGACGGGCGCTGACCCCCTTCGCGGGGGGGAT 
GCGTGCATTTATCAGATCAAAACCAACCCGGTCAGCCCCTCTCCGGCCCCGGCCGGGGGGCGGGCGCCGG 
CGGCTTTGGTGACTCTAGATAACCTCGGGCCGATCGCACGCCCCCCGTGGCGGCGACGACCCATTCGAAC 
GTCTGCCCTATCAACTTTCGATGGTAGTCGCCGTGCCTACCATGGTGACCACGGGTGACGGGGAATCAGG 
GTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTAC 
CCACTCCCGACCCGGGGAGGTAGTGACGAAAAATAACAATACAGGACTCTTTCGAGGCCCTGTAATTGGA 
ATGAGTCCACTTTAAATCCTTTAACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAAT 
TCCAGCTCCAATAGCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCTTGGGAGCGGGCG 
GGCGGTCCGCCGCGAGGCGAGCCACCGCCCGTCCCCGCCCCTTGCCTCTCGGCGCCCCCTCGATGCTCTT 
AGCTGAGTGTCCCGCGGGGCCCGAAGCGTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCCGAGCC 
GCCTGGATACCGCAGCTAGGAATAATGGAATAGGACCGCGGTTCTATTTTGTTGGTTTTCGGAACTGAGG 
CCATGATTAAGAGGGACGGCCGGGGGCATTCGTATTGCGCCGCTAGAGGTGAAATTCTTGGACCGGCGCA 
AGACGGACCAGAGCGAAAGCATTTGCCAAGAATGTTTTCATTAATCAAGAACGAAAGTCGGAGGTTCGAA 
GACGATCAGATACCGTCGTAGTTCCGACCATAAACGATGCCGACCGGCGATGCGGCGGCGTTATTCCCAT 
GACCCGCCGGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGGAGTATGGTTGCAAAGCTGAAA 
CTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAA 
CCTCACCCGGCCCGGACACGGACAGGATTGACAGATTGATAGCTCTTTCTCGATTCCGTGGGTGGTGGTG 
CATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGATAACGAACGAGACTCTGGCATGCT 
AACTAGTTACGCGACCCCCGAGCGGTCGGCGTCCCCCAACTTCTTAGAGGGACAAGTGGCGTTCAGCCAC 
CCGAGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCGGGGCTGCACGCGCGCTACACTGACTG 
GCTCAGCGTGTGCCTACCCTACGCCGGCAGGCGCGGGTAACCCGTTGAACCCCATTCGTGATGGGGATCG 
GGGATTGCAATTATTCCCCATGAACGAGGGAATTCCCGAGTAAGTGCGGGTCATAAGCTTGCGTTGATTA 
AGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGGATGGTTTAGTGAGGCCCTCGGATCG 
GCCCCGCCGGGGTCGGCCCACGGCCCTGGCGGAGCGCTGAGAAGACGGTCGAACTTGACTATCTAGAGGA 
AGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA 
>3000072055893=AluYb8#SINE/Alu 
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCATGAGGTCAGGAGATCG
AGACCATCCTGGCTAACAAGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCCGGGCGCAGTGGCGGGCGCCT
GTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAAGCGGAGCTTGCAGTGAGCCGAGATTG
CGCCACTGCAGTCCGCAGTCCGGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAA 
>3000072055878=FAM#SINE/Alu 
GCCGGGCGCGGTGGCGCGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGTGGGAGGATCGCTTGAGCCCAGGAGTTC
GAGGCTGTAGTGCGCTATGATCGCGCCTGTGAATAGCCACTGCACTCCAGCCTGAGCAACATAGCGAGACCCCGTCTCT
TAAAAAAAAAAAAAAAA 
>3000072055879=FLAM_A#SINE/Alu 
GCCGGGCGCGGTGGCGCGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCGGGAGGATCGCTTGAGCCCAGGAGTTC
GAGACCAGCCTGGGCAACATAGCGAGACCCCGTCTCTAAAAAAAAAAAAAAAAA 
>3000072055880=FLAM_C#SINE/Alu 
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGAGGATCGCTTGAGCCCAGGAGTT
CGAGACCAGCCTGGGCAACATAGCGAGACCCCGTCTCTAAAAAAAAAAAAAAAA 
>3000072055881=FRAM#SINE/Alu 
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Filename: human_refGene.090513.female.gtf 

Description: This file contains the positions and identifying information of all known 

exons in order to create an exon-junction library for mapping splice spanning reads. The 

important files (from left to right) include: Field 1: chromosome; Field 4: exon start 

position; Field 5: exon end position; and Field 9: gene symbol and RefSeq accession ID. 

Contents (significantly truncated due to length): 

## gff-version 2 
## gtf 
## source-version refgene2gff.sh 1.2dev 
## source-file /home/mullermw/test/1.2_testing/refGene.txt 
## date 2009-05-14 
## This file is a transformation of the refGene.txt file from the  
## UCSC genome browser FTP site. 
## Example:  
## http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/refGene.txt.gz  
## 
## This file is similar to the gtf files available through the UCSC genome 
## browser, with a few differnces. 
## The gene_id attribute contains the HUGO name of the associated gene. 
## A gene_id_repeat attribute appears when a gene_id appears at multiple loci. 
## The value of gene_id_repeat is a unique integer for each locus. 
## The transcript_id_repeat attribute appears when a transcript_id appears 
## multiple times in the refGene.txt file.  The value is a unique integer 
## for each occurence of the transcript_id. 
## 
## 
chr1 refGene exon 4225 4692 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 4833 4901 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 5659 5810 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 6470 6628 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 6721 6918 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 7096 7231 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 7469 7605 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 7778 7924 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 8131 8229 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 14601 14754 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 19184 19233 0.000000 - . gene_id 
"WASH5P"; transcript_id "NR_024540"; 
chr1 refGene exon 24475 25037 0.000000 - . gene_id 
"FAM138A"; transcript_id "NR_026818"; 
chr1 refGene exon 25140 25344 0.000000 - . gene_id 
"FAM138A"; transcript_id "NR_026818"; 
chr1 refGene exon 25584 25944 0.000000 - . gene_id 
"FAM138A"; transcript_id "NR_026818"; 
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Filename: global.ini 

Description: This file provides the locations of all the needed files for bioscope to run 

the whole transcriptome pipeline. 

Contents: 

# © 2010 Life Technologies Corporation. All rights reserved. 
###############################################################################
####################### 
#      Global settings for the pipeline run 
 
examples.dir = /N/home/mradovic/bioscope/examples 
reference.file=/N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.fa 
filter.reference.file=${examples.dir}/demos/wholeTranscriptome/references/human
_filter_reference.fasta 
exons.gtf.file=/N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/GTF/human_refGene.090513.female.gtf 
mapping.tagfiles = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/Tumor_1_FC1.csfasta 
qual.file = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/Tumor_1_FC1.qual 
junction.reference.file = 
${intermediate.dir}/spljunctionextraction/junction.fasta 
read.length = 50 
base.dir = /N/home/mradovic/TNBC_BioScope-1.3_Results/FC1/Tumor_1_FC1 
 
##################################################### 
#################### 
# Analysis settings 
 
output.dir = ${base.dir}/output/single_read 
intermediate.dir = ${base.dir}/intermediate 
tmp.dir = ${base.dir}/temp 
merge.output.directory = ${output.dir}/mapping 
merge.output.bam.file = Tumor_1_FC1.bam 
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Filename: wt.single.read.workflow.ini 

Description: This file sets the various parameters for the whole transcriptome module 

and its various plug-ins. This includes whether specific plug-ins are run or not (1=yes, 

0=no), and the number of reads needed to call specific events (alternative splice, fusion, 

etc.) 

Contents: 

# © 2010 Life Technologies Corporation. All rights reserved. 
###############################################################################
####################### 
 
import ./global.ini 
 
#################################################### 
#################### 
# plugin run statements 
 
wt.spljunctionextractor.run = 1 
wt.junction.mapping.run = 1 
wt.filter.mapping.run = 1 
wt.genomic.mapping.run = 1 
wt.merge.run = 1 
wt.sam2wig.run = 1 
wt.counttag.run = 1 
wt.exon.sequence.extractor.run = 1 
wt.junction.finder.run = 1 
 
########################################################### 
##################### 
#       Splice Junction Extractor 
 
wt.splext.genegtf.file = ${exons.gtf.file} 
wt.splext.reference.file = ${reference.file} 
 
############################################################ 
###################### 
#     Filter Mapping Plugin 
 
wt.filter.mapping.reference = ${filter.reference.file} 
 
 
 
########################################################### 
###################### 
#      Genomic Mapping Plugin 
 
wt.genomic.mapping.reference = ${reference.file} 
 
 
########################################################### 
###################### 
#      Merge Plugin 
wt.merge.reference.file = ${reference.file} 
wt.merge.filter.reference.file = ${filter.reference.file} 
wt.merge.junction.reference.file = ${junction.reference.file} 
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wt.merge.qual.file = ${qual.file} 
wt.merge.tmpdir = ${tmp.dir} 
wt.merge.output.dir = ${merge.output.directory} 
wt.merge.output.bam.file = ${merge.output.bam.file} 
 
#wt.merge.known.juntion.penalty = 0 
#wt.merge.putative.junction.penalty = 1 
#wt.merge.score.clear.zone = 5 
#wt.merge.min.junction.overhang = 8 
#wt.merge.num.alignments.to.store = 1 
 
############################################################# 
######################## 
#      Sam2wig Plugin 
 
wt.sam2wig.input.bam.file = ${merge.output.directory}/${merge.output.bam.file} 
wt.sam2wig.output.dir = ${output.dir}/sam2wig 
wt.sam2wig.basefilename = coverage 
 
#wt.sam2wig.alignment.score = 0 
#wt.sam2wig.min.coverage = 10 
#wt.sam2wig.wigperchromosome = true 
#wt.sam2wig.alignment.filter.mode = primary 
#wt.sam2wig.score.clear.zone = 5 
#wt.sam2wig.min.mapq = 10 
 
############################################################# 
######################## 
# Count Tag Plugin 
 
 
wt.counttag.exon.reference = ${exons.gtf.file} 
wt.counttag.input.bam.file = ${merge.output.directory}/${merge.output.bam.file} 
wt.counttag.output.dir = ${output.dir}/counttag 
wt.counttag.output.file.name = countagresult.txt 
 
#wt.counttag.score.clear.zone = 5 
#wt.counttag.alignment.filter.mode = primary 
#wt.counttag.min.alignment.score = 0 
#wt.counttag.min.mapq = 10 
 
############################################################## 
######################## 
# Junction Finder Plugins 
# WARNING: Fusion caller is designed to work primarily with paired end 
datasets.  
# It is not suggested for use only the single read split evidence for calling  
# gene fusions. However, calling and quantifying already known junctions is  
# fine but fewer junctions will be found. 
 
wt.genome.reference = ${reference.file} 
wt.gtf.file = ${exons.gtf.file} 
wt.f5.exseqext.output.reference = 
${intermediate.dir}/exonsequenceextraction/exons_reference.fasta 
wt.junction.finder.gtf.file = ${exons.gtf.file} 
wt.junction.finder.input.exon.reference = ${wt.f5.exseqext.output.reference} 
wt.junction.finder.input.bam = 
${merge.output.directory}/${merge.output.bam.file} 
wt.junction.finder.output.dir = ${output.dir}/junction_finder 
 
#wt.junction.finder.min.exon.length = 25 
#wt.junction.finder.first.read.max.read.length = 50 
#wt.junction.finder.second.read.max.read.length = 25 
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#wt.junction.finder.single.read = 1 
#wt.junction.finder.single.read.min.mapq = 0 
#wt.junction.finder.single.read.min.overlap = 10 
#wt.junction.finder.single.read.max.mismatches = 2 
#wt.junction.finder.single.read.clip.size = 2 
#wt.junction.finder.single.read.clip.total = 10 
#wt.junction.finder.single.read.ReportMultihit = 0  
#wt.junction.finder.single.read.remap = 0 
#wt.junction.finder.single.read.clip.5.prime = 1 
#wt.junction.finder.single.read.min.read.length = 37 
#wt.junction.finder.paired.read = 0 
#wt.junction.finder.paired.read.min.mapq = 10 
#wt.junction.finder.paired.read.avg.insert.size = 120 
#wt.junction.finder.paired.read.std.insert.size = 60 
#wt.junction.finder.single.read.min.evidence.for.junction = 2 
#wt.junction.finder.paired.read.min.evidence.for.junction = 0 
#wt.junction.finder.combined.min.evidence.for.junction = 2 
#wt.junction.finder.single.read.min.evidence.for.alt.splice = 2 
#wt.junction.finder.paired.read.min.evidence.for.alt.splice = 0 
#wt.junction.finder.combined.min.evidence.for.alt.splice = 2 
#wt.junction.finder.single.read.min.evidence.for.fusion = 2 
#wt.junction.finder.paired.read.min.evidence.for.fusion = 0 
#wt.junction.finder.combined.evidence.for.fusion = 2 
#wt.junction.finder.show.same.exon.pairs = 0 
#wt.junction.finder.output.format = 3 
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Filename: analysis.plan 

Description: This file calls all the required .ini files need to run a specific BioScope 

pipeline. In the case of the whole transcriptome pipeline, only the 

wt.single.read.workflow.ini file is called. The wt.single.read.workflow.ini file will in turn 

call the global.ini file upon initiation. 

Contents: 

./wt.single.read.workflow.ini 
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Filename: *.bam 

Description: This file contains the information of mapped reads. The filename is usually 

preceded by the name of the sample, for example, Tumor_1_FC1.bam. The file is 

encoded in binary in order to increase the speed of processing and reduce file size. In 

order to visualize it, the software package samtools is required 

(http://samtools.sourceforge.net). For extensive details about BAM format, see the 

samtools site and the BioScope user manual. For brevity, the important fields for RNA-

seq (from left to right) are described. Field 1:Read ID; Field 3: chromosomal location of 

mapped read; Field 4: position of mapped read; Field 6: CIGAR string where numbers 

refer to bases and letters refer to specific codes, where M=match, N=gap due to intron, 

H=hard-clip, I=insertion, D=deletion; Field 10: sequence in basespace; Field 11: 

mapping quality in Ascii-33 format; Field 18: colorspace quality values in Ascii-33 format; 

Field 19: colorspace sequence of the read. 

Contents: (Example of four mapped reads to chr1 from a BAM file) 

 
2327_122_1766   16      chr1    4269    1       12H38M  *       0       0       
TCTGCTCAGTTCTTTATTGATTGGTGTGCCGTTTTCTC  IIIIIIIIIIIIIIIIDDIIIIIIIIIIIIIIIIIIII  
MD:Z:38 RG:Z:2011033111424185   IH:i:1  NH:i:6  HI:i:1  XN:i:37 
CQ:Z:???=<9:@:9;A=?;9?7==;*;@:<:59=><;<7@3=9537,594,)43 AS:i:37 
CS:Z:T12220001303111101032103300220121223122220133020103 
1047_224_626    16      chr1    4281    2       50M     *       0       0       
TTTATTGATTGGTGTGCCGTTTTCTCTGGAAGCCTCTTAAGAACACAGTG      
!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICA      MD:Z:50 
RG:Z:2011033111424185   IH:i:1  NH:i:6  HI:i:1  XN:i:49 
CQ:Z:6,8988:>>=:?>?=:?;>@8;;?==?:>6;>::4>=>;<:>5;</;4>= AS:i:49 
CS:Z:T21121111022030222032020122220001303111101032103300 
1615_1687_46    16      chr1    4292    2       50M     *       0       0       
GTGTGCCGTTTTCTCTGGAAGCCTCTTAACAACACAGTGGCGCAGGCTGG      
!IFIII>.FIII=HIIIA=IEFIIIIE:IIIIIIIIIIIIIIIIIIIIII      MD:Z:29G20      
RG:Z:2011033111424185   IH:i:1  NH:i:7  HI:i:1  XN:i:43 
CQ:Z:=<9858;;4:9=3956;88=9<0+;;;2:-97';:8://=>=*%:5;164 AS:i:43 
CS:Z:T20123021333011211110110302220320201222200013031111 
502_556_894     16      chr1    4297    2       12H38M  *       0       0       
CCGTTTTCTCTGGAAGCCTCTTAAGAACACAGTGGCGC  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII  
MD:Z:38 RG:Z:2011033111424185   IH:i:1  NH:i:3  HI:i:1  XN:i:37 
CQ:Z::>>=?698A>96<8>@=>>@7?<<;;8<<?;8@:<=8;<999=:;+6:-< AS:i:37 
CS:Z:T13330112111102203022203202012222000130131110033020 

 

 

http://samtools.sourceforge.net/�
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A1.3 Derivation of differential gene expression 

 

A1.3.1 Performing differential gene expression analysis 

 One of the powerful applications of RNA-seq is to derive differential gene 

expression. Unlike microarrays, which use arbitrary signal intensity, RNA-seq is a digital 

counting of mapped reads allowing for an accurate assessment of gene expression. In 

order to perform this digital counting, mapped reads from the BAM files are cross-

referenced against known genes present in the NCBI RefSeq database. To obtain the 

database of all known curated genes in hg18, the RefSeq database in the form of the 

refFlat (refFlat.txt.gz) file is downloaded from the UCSC Genome Bioinformatics Site. 

The refFlat file contains the exon position numbers of all known genes in the human 

genome with corresponding identifying information (see file example). While several 

different software programs exist in order to count reads mapped to known genes and 

derive RPKM expression values, Partek Genomics Suite (Windows) performs this 

function in the most efficient manner. In Partek, BAM files of mapped RNA-seq data are 

imported into the software. The refFlat file is then downloaded and converted into a 

Partek compatible annotation file. The software then cross-references the mapped RNA-

seq from the BAM file using the position numbers of the mapped reads against the 

position numbers of all known exons in the refFlat database in order to assign each read 

to a gene. The counts of the mapped reads to each gene are then determined and the 

RPKM value is calculated by taking total number of reads mapping to the gene divided 

by the length of the gene in kilobasepairs divided by the number of mapped reads (in 

millions).  

 Once the RPKM values for each gene and sample are determined, differential 

expression can then be calculated and statistically analyzed. For basic differential 

expression, fold change = average RPKM value of sample set 1/average RPKM value of 
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sample set 2. In the case of this dissertation, this was the average RPKM values of the 

10 TNBC samples divided by the average RPKM values of the 10 normal samples. 

Because we are comparing 10 values vs. 10 values (in essence 10 biolological 

replicates vs. 10 biological replicates), a t-based statistic can then be used to determine 

significance. In the case a 1-way ANOVA (equivalent to a 2-sample, 2-tailed t-test, 1-

way refers to the sample type, TNBC or normal) is performed in order to determine a p-

value of the differential expression for each gene. Because thousands of genes are 

being considered, a correction for multiple comparisons must be performed. The 

accepted standard for gene expression data is FDR (false discovery rate) which when 

given a range of p-values, assesses the percentage of genes of a dataset that are likely 

to be false positives and do not reflect true differential expression.  

 Along with differential gene expression, downstream analyses that describe 

global gene expression can be performed in Partek. This includes principal components 

analysis and hierarchical clustering of the RPKM data, and gene ontology/gene set 

enrichment analysis of the differential expression data. Also, differential gene expression 

data can be exported to Ingenuity Pathway Analysis (IPA) to perform network and 

pathway analyses. 
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A1.3.2 Example refFlat file used for differential gene expression 

Filename: refFlat.txt 

Description: The refFlat file is a file detailing the position numbers of all genes (and 

their exons) in the human genome along with gene identifier information. This file is 

important in the use of cross-referencing mapped RNA-seq reads to genes in order to 

derive RPKM values and subsequent differential gene expression. The fields (from left to 

right) include: Field 1: gene symbol; Field 2: RefSeq accession number; Field 3: 

chromosome; Field 4: strand; Field 5: transcription start position; Field 6: transcription 

end position; Field 7: coding start position; Field 8: coding end position; Field 9: exon 

count; Field 10: start positions of all exons; Field 11: end positions of all exons. 

Contents (significantly truncated due to length): 

KCNMB3 NM_171829 chr3 - 180443247 180460373 180443385
 180459431 4 180443247,180444976,180451224,180459429,
 180443766,180445175,180451416,180460373, 
HSCB NM_172002 chr22 + 27468042 27483496 27468083
 27483157 6
 27468042,27469869,27470602,27471851,27477228,27483065,
 27468319,27469966,27470692,27471996,27477276,27483496, 
TEDDM1 NM_172000 chr1 - 180633874 180636374 180635421
 180636243 1 180633874, 180636374, 
LACTB NM_171846 chr15 + 61201051 61209079 61201123
 61208906 5 61201051,61201887,61206110,61206604,61208736,
 61201480,61201954,61206301,61206941,61209079, 
SERF2 NR_037672 chr15 + 41871465 41875579 41875579
 41875579 4 41871465,41872464,41873199,41873863,
 41871873,41872573,41873426,41875579, 
FAM138A NR_026818 chr1 - 24473 25944 25944 25944 3
 24473,25139,25583, 25037,25344,25944, 
FAM138F NR_026820 chr1 - 24473 25944 25944 25944 3
 24473,25139,25583, 25037,25344,25944, 
MIR183 NR_029615 chr7 - 129201980 129202090 129202090
 129202090 1 129201980, 129202090, 
MIR221 NR_029635 chrX - 45490528 45490638 45490638
 45490638 1 45490528, 45490638, 
MIR939 NR_030635 chr8 - 145590171 145590253 145590253
 145590253 1 145590171, 145590253, 
SPRY2 NM_005842 chr13 - 79808112 79813087 79808893
 79809841 2 79808112,79812757, 79809892,79813087, 
SPRY1 NM_005841 chr4 + 124540132 124544359 124542196
 124543156 2 124540132,124542141, 124540399,124544359, 
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A1.4 Detection of point mutations from mapped RNA-seq data 

 

A1.4.1 Bioinformatic methods to call point mutations from RNA-seq data  

Another powerful application of RNA-seq is the ability to interrogate the raw 

sequence of mapped reads in order to search for mutations. As explained in detail in 

Section 1.3.3, RNA-seq has unique challenges in accurately determining base pair 

changes. In order to derive accurate and biologically meaningful mutational data, a four-

step process is employed: 

1) Preparation of BAM files for use in point mutation calling 

2) Detection of point mutations from BAM data 

3) Annotation of point mutations 

4) Parsing of the point mutation data 

First, the BAM files are prepared for use in point mutation calling. This first involves 

merging all .bam files for each sample into a single file. As mentioned previously, each 

sample may have multiple .bam files because of the sample being run across multiple 

flowcells. In order to merge the .bam files, the software package Picard is used 

(http://picard.sourceforge.net). A java script MergeSamFiles.jar is a component of Picard 

and is used in the following example to merge two .bam files from sample Tumor_1 

Where I = input files and O = output file: 

[Usage]: > java –jar MergeSamFiles.jar I=<input files> O=<output file> 

[Example]: > java -jar MergeSamFiles.jar 

I=/panasas/milan/milan_TNBC_Data/FC1/Tumor_1_FC1/ _1_FC1.bam 

I=/panasas/milan/milan_TNBC_Data/FC2/Tumor_1_FC2/Tumor_1_FC2.bam 

O=/panasas/milan/IUPUI_data/milan_TNBC_Data/merged_bam/Tumor_1/Tumor_1.bam 

http://picard.sourceforge.net/�
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Once the BAM files are merged for each sample, the BAM files are then “piledup” 

using samtools which is a format that reports the base sequence, base quality value, 

and mapping quality value for every position in the genome (line-by-line) that is covered 

by a read(s) (see file example in Section A1.4.2).  Samtools extracts this information 

from the .bam file. To do this the following command is run: 

[Usage]: >samtools pileup –s –f <reference.fa> <.bam file> > <output file> 

[Example]: >samtools pileup –s –f human_hg18_female.fa Tumor_1_FC1.bam > 

Tumor_1_FC1.bam.pileup 

 In the second step, the .bam.pileup files are then used to call point mutations. As 

described in Section 1.3.3, unique statistical challenges are presented when calling point 

mutations from mapped RNA-seq data. To overcome this, the SNVMix2 (Single 

nucleotide variants Mix 2, http://compbio.bccrc.ca/?page_id=204) software is used which 

is specifically designed to account for the non-uniformity in coverage when calling point 

mutations. SNVMix2 is run using the following: 

[Usage]: >./SNVMix2 –i <input pileup file> -o <output SNVMix2 file> 

[Example]: > ./SNVMix2 -i 

/N/gpfs/mradovic/merged_TNBC_bam_files/Normal_1.bam.pileup -o 

/N/gpfs/mradovic/merged_TNBC_bam_files/Normal_1.bam.pileup.SNVMix2 

 By default, SNVMix will only consider bases that have a minimum base and 

mapping PHRED score of Q20, thus eliminating a substantial number of false positives 

due to poor sequencing quality. The output file from SNVMix2 contains information for 

each position of the genome where a potential point mutation has occurred. This 

includes the reference allele and its read count, the variant allele and its read count, the 

probabilities of each genotype (homozygous wildtype, heterozygous, homozygous 

variant), and the genotype call based on the genotype with the highest probability. The 

SNVMix2 output file is then further filtered in order reduce false positives by considering 

http://compbio.bccrc.ca/?page_id=204�
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only those mutations that had enough read support to result in a 90% probability of the 

call being real. This is done using the following command in SNVMix2: 

[Usage]: > perl snvmix2summary.pl –i <input .bam.pileup.SNVMix2 file> -c <int> -t 

<probability> 

[Example]:> perl snvmix2summary.pl -i 

/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/Tumor_1.bam.pileup.SNVMix2 -c 3 -t 

0.9 > 

/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/Tumor_1.bam.pileup.SNVMix2.SNVfilt

ered0.9 

 In the third step, the called mutations need to be annotated in order to determine 

their gene location and potential function. To do this, the ANNOVAR software 

(http://www.openbioinformatics.org/annovar/) is used as an efficient means of annotating 

genes. In order to use ANNOVAR, output from SNVMix2 has to be reformatted in order 

to be used in annovar. This can be done using the following command: 

[Usage]: >awk '{print $1,$2,$3}' <SNVfiltered file> | sed 's/:/ /g' | awk '{print 

$1,$2,$2,$3,$4}' > <output file> 

[Example]: >awk '{print $1,$2,$3}' 

Tumor_1.bam.pileup.SNVMix2.SNVfiltered0.9.delrandom | sed 's/:/ /g' | awk '{print 

$1,$2,$2,$3,$4}' > Tumor_1.annovar  

 ANNOVAR can then be used to filter mutations through a custom pipeline 

(described in Section 3.2, and Figure 27) that focuses only on nonsynonymous and 

stopgain/stoploss mutations while also filtering for known variants from the 1000 

genomes project and dBSNP. To do this a custom bash script pipeline was created (see 

Section A1.4.2) for example file. At the end of this, a file is created called .filtered that is 

then used for subsequent parsing (see Section A1.4.2 for example and details). This 

http://www.openbioinformatics.org/annovar/�
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.filtered file contains the chromosome and position number and gene for each called 

mutation that is nonsynonymous and not present in 1000 genomes/dbSNP.  

 In the fourth step, the .filtered files are combined and parsed in order to find 

recurrent patterns of mutations. To combine the files, a custom perl script, 

consolidatereport.pl is used as follows: 

[Usage]: > perl consolidateReport.pl <path to directory of filtered files> > <output file> 

[Example]: > perl consolidateReport.pl 

/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/filtered/ > 

/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/filtered/consolidated.TNBC_N

ew_Mutation.output 

 The output of this perl script is a single file that combines all the data from the 

.filtered files in order to report which mutations occur in which sample (se Section A1.4.2 

for example and details.). This file can then be imported into Excel for further sorting.  
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A1.4.2 Examples of files used in point mutation calling 

Filename: *.bam.pileup 

Description: A file that is derived from a .bam file which reports the base sequence, 

base quality value, and mapping quality value for every position in the genome (line-by-

line) that is covered by a read(s). The contents are the following (left to right): Field 1: 

chromosome; Field 2: position number; Field 3: reference allele; Field 4: number of 

reads covering the allele; Field 5: a dot stands for a match to the reference base on the 

forward strand, a comma for a match on the reverse strand, `ACGTN' for a mismatch on 

the forward strand and ‘acgtn' for a mismatch on the reverse strand, carat symbol ‘^' 

marks the start of a read segment which is a contiguous subsequence on the read 

separated by ‘N/S/H' CIGAR operation, and a symbol ‘$' marks the end of a read 

segment; Field 6: Base qualities in Ascii-33; Field 7: Mapping qualities in Ascii-33. 

Contents: (Example) 

chr1 4860 A 7 ,,,,,,, IEIIIII """"""" 
chr1 4861 G 7 ,,,,,,, FIIIIII """"""" 
chr1 4862 A 7 ,,,,,,, IIIIHII """"""" 
chr1 4863 G 7 ,,,,,,, IIIIIII """"""" 
chr1 4864 A 7 ,,,,,,, IIIIIII """"""" 
chr1 4865 T 7 ,,,,,,, IHIIDII """"""" 
chr1 4866 C 7 ,,,,,,, IIIIEII """"""" 
chr1 4867 C 7 ,,,,,,, IIII@II """"""" 
chr1 4868 G 7 ,,,,,,, IIIIAII """"""" 
chr1 4869 A 7 ,$,,,,,, IIII9II """"""" 
chr1 4870 C 6 ,,,,,, III'II """""" 
chr1 4871 A 6 ,,,,,, III'II """""" 
chr1 4872 T 7 ,,,,,,^", IIIIII! """"""" 
chr1 4873 C 7 ,,,,,,, IIIIIC@ """"""" 
chr1 4874 A 7 ,,,,,,, IEIIIIB """"""" 
chr1 4875 A 7 ,,,,,,, HGIIIII """"""" 
chr1 4876 G 7 ,,,,,,, IDIAIII """"""" 
chr1 4877 T 7 ,,,,,,, IHI.IHI """"""" 
chr1 4878 G 7 ,,c,$,,, III8II) """"""" 
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Filename: *.SNVMix2 (SNVMix2 output) 

Description: Output file after .bam.pileup is run through SNVMix2 for mutation calling. 

SNVMix outputs 4 columns: 
1: coordinate in "chromosome:position" format 
2: reference base 
3: non-reference base 
4: comma separated field: 
 
REF:#, NREF:#, p(AA), p(AB), p(BB), maxP 
 
REF:# reference base and number of occurrences that passed quality settings 
NREF:#non-reference base and number of occurrences that passed quality settings 
p(AA) probability assigned to homozygous to reference 
p(AB) probability assigned to heterozygous genotype 
p(BB) probability assigned to homozygous to the non-reference 
maxP  class with max probability (1=AA, 2=AB, 3=BB) 
 

Contents: (Example) 

chr10:176795 A G A:0,G:4,0.0000163823,0.0712955092,0.9286881085,3 
chr10:284953 A G A:0,G:10,0.0000000000,0.0021432927,0.9978567073,3 
chr10:353785 C G C:0,G:4,0.0000163827,0.0712955701,0.9286880472,3 
chr10:458310 T G T:0,G:4,0.0000164198,0.0713014847,0.9286820955,3 
chr10:489191 G A G:0,A:6,0.0000000380,0.0228081436,0.9771918184,3 
chr10:671950 G T G:2,T:3,0.0119679627,0.9851925401,0.0028394972,2 
chr10:846385 C T C:0,T:6,0.0000000375,0.0227975797,0.9772023828,3 
chr10:846918 A T A:0,T:63,0.0000000000,0.0000000000,1.0000000000,3 
chr10:847151 A G A:0,G:4,0.0000164615,0.0713081315,0.9286754070,3 
chr10:863978 G A G:0,A:5,0.0000007840,0.0405909275,0.9594082885,3 
chr10:868359 a G a:0,G:4,0.0000163827,0.0712955694,0.9286880479,3 
chr10:868895 g A g:2,A:5,0.0000840398,0.9905118400,0.0094041202,2 
chr10:877382 C G C:0,G:4,0.0000165223,0.0713177683,0.9286657095,3 
chr10:889804 c T c:0,T:6,0.0000000366,0.0227758256,0.9772241378,3 
chr10:1053441 T G T:0,G:7,0.0000000017,0.0126831403,0.9873168580,3 
chr10:1053447 A G A:0,G:7,0.0000000017,0.0126829171,0.9873170812,3 
chr10:3144461 G A G:0,A:4,0.0000163847,0.0712958896,0.9286877257,3 
chr10:3170227 T C T:0,C:12,0.0000000000,0.0006517710,0.9993482290,3 
chr10:3170298 C T C:0,T:10,0.0000000000,0.0021433504,0.9978566496,3 
chr10:3170316 T C T:0,C:15,0.0000000000,0.0001094150,0.9998905850,3 
chr10:3170689 C A C:0,A:5,0.0000008596,0.0407348580,0.9592642824,3 
chr10:3175237 A G A:0,G:5,0.0000008012,0.0406247274,0.9593744713,3 
chr10:3179380 C T C:0,T:12,0.0000000000,0.0006515631,0.9993484369,3 
chr10:3190292 G A G:0,A:14,0.0000000000,0.0001979034,0.9998020966,3 
chr10:3192065 T C T:0,C:6,0.0000000370,0.0227862114,0.9772137516,3 
chr10:3196027 A G A:0,G:32,0.0000000000,0.0000000043,0.9999999957,3 
chr10:3197705 G C G:0,C:6,0.0000000378,0.0228035383,0.9771964239,3 
chr10:3198512 G A G:0,A:19,0.0000000000,0.0000100735,0.9999899265,3 
chr10:3198557 A G A:0,G:5,0.0000007846,0.0405922066,0.9594070088,3 

 

 

 



133 
 

Filename: Custom ANNOVAR pipeline bash script 

Description: The bash script run a set of sequential commands that will input the 

.annovar file modified from the SNVMix2 output and outputs a .filtered file for further 

downstream use in data parsing. This set of command will isolate those called mutations 

that are nonsynonymous and are not present in the 1000 genomes project or dbSNP 

and the output the mutations in chromosome:position format with the associated gene 

symbol. 

Contents: (example of script written for sample Tumor_1) 

/N/gpfs/mradovic/annovar/annotate_variation.pl -geneanno 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar 
/N/gpfs/mradovic/annovar/humandb/ 
sed '/\<synonymous\>/d' 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function > 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn 
awk '{print $5,$6,$7,$8,$9,$4}' 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn | sed 's/:/ /g' | awk '{print $1,$2,$3,$4,$5,$6}' > 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist 
/N/gpfs/mradovic/annovar/annotate_variation.pl -filter -dbtype 1000g2010jul_ceu 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist /N/gpfs/mradovic/annovar/humandb/ 
/N/gpfs/mradovic/annovar/annotate_variation.pl -filter -dbtype 1000g2010jul_yri 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist.hg18_CEU.sites.2010_07_filtered 
/N/gpfs/mradovic/annovar/humandb/ 
/N/gpfs/mradovic/annovar/annotate_variation.pl -filter -dbtype 
1000g2010jul_jptchb 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist.hg18_CEU.sites.2010_07_filtered.hg18_YRI.sites.2010
_07_filtered /N/gpfs/mradovic/annovar/humandb/ 
/N/gpfs/mradovic/annovar/annotate_variation.pl -filter -dbtype snp130 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist.hg18_CEU.sites.2010_07_filtered.hg18_YRI.sites.2010
_07_filtered.hg18_JPTCHB.sites.2010_07_filtered 
/N/gpfs/mradovic/annovar/humandb/ 
awk '{print $1":"$2"&"$6,1}' 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.annovar.exonic_vari
ant_function.delsyn.varlist.hg18_CEU.sites.2010_07_filtered.hg18_YRI.sites.2010
_07_filtered.hg18_JPTCHB.sites.2010_07_filtered.hg18_snp130_filtered > 
/N/gpfs/mradovic/TNBC_New_Mutation_Analysis/annovar/Tumor_1.filtered 
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Filename: *.filtered 

Description: This is the output file from the ANNOVAR pipeline bash script. Each 

sample has its own .filtered file. The .filtered file consists of two columns: Column 1: 

chromosome:position”&”gene symbol; Column 2: is always the number “1” in reference 

that a mutation has occurred. Column 2 is used in the subsequent perl script, 

consolidateReport.pl.  

Contents: (Example, truncated due to length) 

chr3:123902102&PARP14 1 
chr3:126662353&SNX4 1 
chr17:19515743&ALDH3A2 1 
chr1:240108883&EXO1 1 
chr4:48217871&FRYL 1 
chr2:202212016&ALS2CR4 1 
chr1:107401632&PRMT6 1 
chrX:155944&PLCXD1 1 
chr1:17470024&PADI3 1 
chr13:47705589&ITM2B 1 
chr12:6794398&CD4 1 
chr10:126663441&ZRANB1 1 
chr17:20850825&USP22 1 
chr8:67650912&MYBL1 1 
chr12:9116703&A2M 1 
chr1:54190557&LRRC42 1 
chr17:74311632&USP36 1 
chr6:90410593&MDN1 1 
chr16:30999807&ZNF646 1 
chr13:95037910&DZIP1 1 
chr14:87974248&SPATA7 1 
chr17:7438743&FXR2 1 
chr2:227370087&IRS1 1 
chr3:137499597&PCCB 1 
chr1:225909455&ZNF678 1 
chr7:69866145&AUTS2 1 
chr17:26577818&NF1 1 
chr1:202033790&ZBED6 1 
chrX:128520589&OCRL 1 
chr7:30797453&FAM188B 1 
chr2:237948178&COL6A3 1 
chr9:32624577&TAF1L 1 
chr3:194815258&OPA1 1 
chr3:13500037&HDAC11 1 
chr17:53928094&MTMR4 1 
chr9:2828479&KIAA0020 1 
chr5:96165111&ERAP1 1 
chr19:8894662&MUC16 1 
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Filename: consolidateReport.pl 

Description: This perl script will combine multiple .filtered files into a single output file. 

The script also produces a log file in order to inform the user of the order of the columns. 

The output file starts with first column which is chromosome:position”&”gene symbol 

followed by columns for each sample which denotes whether the mutation is present “1” 

or absent “0”.  

Contents:  

#!/usr/bin/env perl 
 
use strict; 
use warnings; 
use File::Basename; 
 
my $directory = shift; 
my %Clusters; 
my @files; 
 
##process each file in the directory 
### Process each file in the From Directory 
opendir(IMPORTANTE, $directory) or die "can't opendir $directory $!\n"; 
while (defined (my $file = readdir(IMPORTANTE))) { 
        # do something with "$directory/$file" 
        next unless ($file =~ /filtered/);  
 my $filebase = basename($file, ".filtered"); 
 print STDERR "Processing: ", $filebase, "\n"; 
 
 push @files, $file; 
 my $path = $directory . "/" . $file; 
 open (FILE, $path) || die "could not open file ", $directory, "/",  
$file; 
 while(<FILE>) { 
  if ($_ =~ /^(\S+)\s+(\S+)/){ 
   $Clusters{$1}{$file} = $2; 
  } 
 } 
 close FILE; 
} 
 
#end going through each file 
open (ORDER, ">Log.order.txt") || die "could not open log file $!"; 
for (my $i = 0; $i < @files; $i++) { 
 print ORDER $files[$i], "\n"; 
} 
close ORDER; 
 
###print out the report 
foreach my $key (keys %Clusters) { 
 print $key, "\t\t";  
 for (my $i = 0; $i < @files; $i++) { 
  if (exists $Clusters{$key}{$files[$i]}) { 
   print $Clusters{$key}{$files[$i]}, "\t"; 
  }else { 
   print "0", "\t"; 
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  }  
 } 
 print "\n"; 
} 

 

Output file (Example, truncated due to length): 

chr11:102699863&DYNC2H1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
chr3:197078169&TNK2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
chr7:5376830&TNRC18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
chr16:179203&LUC7L 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
chr18:26840888&DSC3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
chr1:93430183&CCDC18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
chr12:111829274&OAS1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
chr16:55092429&BBS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
chr14:105029074&C14orf80 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
chr19:3013825&AES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
chr22:22903565&CABIN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
chr14:67321677&ZFYVE26 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
chr15:43448936&GATM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
chr8:22034552&HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
chr17:17640432&RAI1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
chr1:54025439&TMEM48 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
chr14:35406937&BRMS1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
chr5:141338098&RNF14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
chr1:22086638&HSPG2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
chr7:91795051&ANKIB1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
chr3:171681547&SLC7A14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
chr2:27458920&PPM1G 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
chr14:67311570&ZFYVE26 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
chr4:119881302&SEC24D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
chr10:75190063&SEC24C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
 

Log file output (Example): 

Normal_1.filtered 
Normal_10.filtered 
Normal_2.filtered 
Normal_3.filtered 
Normal_4.filtered 
Normal_5.filtered 
Normal_6.filtered 
Normal_7.filtered 
Normal_8.filtered 
Normal_9.filtered 
Tumor_1.filtered 
Tumor_10.filtered 
Tumor_2.filtered 
Tumor_3.filtered 
Tumor_4.filtered 
Tumor_5.filtered 
Tumor_6.filtered 
Tumor_7.filtered 
Tumor_8.filtered 
Tumor_9.filtered 
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A1.5 Detection of small indels from mapped RNA-seq data 

 

A1.5.1 Bioinformatic methods to call point mutations from RNA-seq data 

 Another powerful application of RNA-seq is the ability to interrogate the raw 

sequence of mapped reads in order to search for small insertion/deletions (indels). As 

explained in detail in Section 1.3.3, small indels require the use of gapped alignment in 

order to be interrogated. There currently no existing standardized tools to call small 

indels from colorspace RNA-seq. But a non-standard custom pipeline exists that takes 

advantage of BioScope’s gapped alignment capability in its DNA resequencing module. 

To perform this analysis, the whole transcriptome module is run as normal (described in 

Section A1.2.2). After its run, a three step process is run involving the use of three .ini 

files. The .ini files are run in the following order and are provided as part of the BioScope 

package: 1) example.smallIndelFrag.ini; 2) example.matobam.ini; 3) 

example.smallIndel.ini. 

The first .ini file, example.smallIndelFrag.ini, uses the intermediate match file of the 

RNA-seq genomic mapping from the whole transcriptome pipeline. This file is found in 

the intermediate/s_mapping/genomic_map directory with the filename extension 

.csfasta.ma . This file also requires the original .qual file and the reference. This .ini file 

will perform the gapped alignments of the reads in order to find the indels. The output is 

written to the output directory with the file indel-evidence-list.pas. The second .ini file, 

example.matobam.ini will simply convert the gapped alignment output (.pas file) into 

BAM format. The third .ini file, example.smallIndel.ini, will take the BAM file (and actually 

multiple BAM files if a sample has multiple BAM files) and output the indels in 

spreadsheet format. The indels are then parsed exactly the same was as performed for 

point mutations as described in Section A1.4.1. 
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A1.5.2 Examples of files used in small indel calling 

Filename: example.smallIndelFrag.ini 

Description: This is a BioScope .ini file that will perform the gapped alignment needed 

for detecting small indels. The file uses an intermediate .csfasta.ma file from the 

genomic mapping portion of the whole transcriptome pipeline of BioScope. It also 

requires a .qual file, reference genome, and a cmap file that is simply the locations of 

individual chromosomal fasta files (see BioScope software for example). 

Contents: (Example) 

#################################### 
#################################### 
## 
##  global parameters 
## 
import ./global.ini 
reference = /N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.fa 
output.dir = ${base.dir}/output 
 
run.name = Tumor_1_FC1 
sample.name = Tumor_1_FC1 
primer.set = F3 
read.length = 50 
 
mapping.output.dir = ${output.dir}/s_mapping 
 
# 
# small indel fragment pipeline 
# 
small.indel.frag.run = 1 
 
cmap = /N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.cmap 
small.indel.frag.match = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/intermediate/s_mapping/genomic_map/Tumor_1_FC1.csfa
sta.ma 
small.indel.frag.qual = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/Tumor_1_FC1.qual 
 
small.indel.frag.output.dir = ${output.dir}/smallIndelFrag 
small.indel.frag.job.script.dir = ${output.dir}/smallIndelFrag/job 
small.indel.frag.intermediate.dir = ${output.dir}/smallIndelFrag/intermediate 
small.indel.frag.log.dir = ${base.dir}/smallIndelFrag-log-dir 
 
#small.indel.frag.indel.preset = 
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Filename: example.matobam.ini 

Description: This is a BioScope .ini file that will convert the gapped alignment output 

into a BAM file. This .ini file requires the .pas file, the original intermediate .csfasta.ma 

file, the reference genome and the .qual file. 

Contents: (Example) 

#################################### 
#################################### 
## 
##  global parameters 
## 
import ./global.ini 
output.dir = ${base.dir}/output 
reference = /N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.fa 
 
run.name = Tumor_1_FC1 
sample.name = Tumor_1_FC1 
primer.set = F3 
read.length = 50 
 
#pipeline.cleanup.middle.files = 0 
#job.cleanup.temp.files = 0 
 
 
# 
#     mapping pipeline 
# 
#mapping.output.dir = ${output.dir}/s_mapping/ 
 
 
# 
#       ma to bam pipeline 
# 
ma.to.bam.run = 1 
### depends on output of mapping 
ma.to.bam.match.file = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/intermediate/s_mapping/genomic_map/Tumor_1_FC1.csfa
sta.ma 
ma.to.bam.pas.file = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/output/smallIndelFrag/indel-evidence-list.pas 
ma.to.bam.output.dir = ${output.dir}/maToBam 
 
ma.to.bam.reference =  ${reference} 
ma.to.bam.qual.file =  /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/Tumor_1_FC1.qual 
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Filename: example.smallIndel.ini 

Description: This is a BioScope .ini file that will take the BAM files created using the 

example.matobam.ini and output the small indels in spreadsheet format. This .ini file 

requires the reference genome, the BAM file, and cmap file. 

Contents: (Example) 

#################################### 
#################################### 
## 
##  global parameters 
## 
import ./global.ini 
reference = /N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.fa 
output.dir = ${base.dir}/output 
 
run.name = Tumor_1 
sample.name = Tumor_1 
primer.set = F3 
read.length = 50 
 
 
# 
# small indel pipeline 
# 
small.indel.run = 1 
 
small.indel.bam.file = /N/home/mradovic/TNBC_BioScope-
1.3_Results/FC1/Tumor_1_FC1/output/maToBam/Tumor_1_FC1.csfasta.ma.bam,/N/home/m
radovic/TNBC_BioScope-
1.3_Results/FC2/Tumor_1_FC2/output/maToBam/Tumor_1_FC2.csfasta.ma.bam  
 
small.indel.candidate.dir = ${output.dir}/smallIndel 
cmap = /N/home/mradovic/bioscope/BioScope-1.3.rBS131-
55029_20101119113500/etc/files/hg18/reference/human_hg18_female.cmap 
 
 
small.indel.log.dir = ${base.dir}/smallIndel-log-dir 
 
#set to 1 for small test data 
small.indel.min.num.evid = 1 
 
small.indel.output.prefix=Tumor_1 
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A1.6 Detection of gene fusions from mapped RNA-seq data 

 

As described in Section 1.3.3, gene fusions are yet another output that can be 

interrogated from mapped RNA-seq data. To perform this detection, reads that map to 

exons of two different genes have to be identified. Only reads that partially mapped to 

the human genome in the original read mapping are used for gene fusion discovery. To 

reduce the search space for gene fusion junctions, only the ends of known exons 

derived from the RefSeq database are considered. Using the SASR Junction Finder (an 

plug-in of BioScope), putative fusion junctions are identified that have at least 2 

supporting reads with 2 unique starting points (2 unique reads). To filter for false 

positives, any candidate fusion must only appear in the TNBC samples and not in the 

normals. The fusion output is further filtered by removing any gene & exon involved in 

more than 2 fusions as these are most likely false positives. In our final list, we consider 

only fusions that have at least 3 supporting reads (with at least 2 unique starting points).  

 

Suffix Array Single Read (SASR) Junction Finder 

A read provides evidence of a junction between an exon e and exon f if and only 

if (1) exon e maps to the prefix of the read, (2) exon f maps to the suffix of the read and 

(3) the sum of the two map lengths is equal to the length of the read (Figure 33A). SASR 

junction finder is adapted to work with di-base (color) reads. In this space, two fused 

exons introduce an additional color between them which does not map to reference 

genome. The color is not internal to either exon in the pair so there needs to be a plus 1 

in condition (3) for color space (Figure 33B). For an exon to map to the prefix of the 

read, the exon must contain a suffix that starts with the prefix of the read. To avoid 

spurious maps, i.e. false positives, we require that, for an exon to map to a read, it must 

do so in at least 10 positions. The process for mapping exons to read suffixes is similar 
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to that for mapping exons to prefixes of the reads. Once the list of exons that mapped to 

the prefix and suffix of the read are identified, it can be determined whether the read 

provides evidence for a unique junction. Multiple evidences with the same start position 

are not stored as separate evidence; only one of them is kept.  

 

Running and parsing the gene fusion pipeline 

 As calling gene fusions is a plug-in of the BioScope whole transcritome pipeline, 

no special additional files are needed. The number of read evidences required to call a 

fusion are stipulated in the wt.single.read.workflow.ini file of the original transcriptome 

mapping. Fusion output is written to the standard BioScope output directory. The text 

files outputs can then be manipulated in Excel. 
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A.          Map Sizes 
... G T A C G T A T A A C T A A A G G T G A A A A G A A ... 13 +  4 
... C G C G C G C T A A C T A A A G G T G A A A A G A T ...  5 + 12 
... C T A A G C A T A A C T A A A G G T G A A A A G C T ...  9 +  8 
                  T A A C T A A A G G T G A A A A G            17 
B. 
A C G T A C G T A T A A C T A A A G G T G A A A A G A A A   13 +  4 
 1 3 1 3 1 3 1 3 3|3 0 1 2 3 0 0 2 0 1 1 2   0 0 2|2 0 0    12 +  3 
                  |                               | 
C G C G C G C G C T A A C T A A A G G T G A A A A G A T A    5 + 12 
 3 3 3 3 3 3 3 3 2|3 0 1 2 3   0 2 0 1 1 2 0 0 0 2|2 3 3     4 + 11 
                  |                               | 
C T C T A A G C A T A A C T A A A G G T G A A A A G C T C    9 +  8 
 2 2 2 3 0 2 3 1 3|3 0 1 2 3 0 0 2   1 1 2 0 0 0 2|2         8 +  7 
                  |                               | 
read:             T A A C T A A A G G T G A A A A G              17 
                  |3 0 1 2 3 0 0 2 0 1 1 2 0 0 0 2|              16 
 

Figure 33. Schematic of the premise behind the SASR algorithm. (A) Three (artificial) 

exon pairs aligned with a read. The junction is marked in bold underline. The read 

serves as evidence for all three. The lengths of the aligning suffix and prefix from each 

pair must add up to the length of the read, 17 bases. (B) The color alignment 

corresponding to A. When two exons are spliced together, they introduce an additional 

color between them. This color is present in the read, but not in the aligned exons. 
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Appendix 2: Lists of differentially expressed genes 

 

Please see supplemental file for lists of differentially expressed genes identified in this 

dissertation. 
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