21 research outputs found

    Raman microscopy to characterize plasma-wall interaction materials: from carbon era to metallic walls

    Get PDF
    Plasma-wall interaction in magnetic fusion devices is responsible for wall changes and plasma pollution with major safety issues. It is investigated both in situ and ex situ, especially by realizing large scale dedicated post-mortem campaigns. Selected parts of the walls are extracted and characterized by several techniques. It is important to extract hydrogen isotopes, oxygen or other element content. This is classically done by ion beam analysis and thermal desorption spectroscopy. Raman microscopy is an alternative and complementary technique. The aim of this work is to demonstrate that Raman microscopy is a very sensitive tool. Moreover, if coupled to other techniques and tested on well-controlled reference samples, Raman microscopy can be used efficiently for characterization of wall samples. Present work reviews long experience gained on carbon-based materials demonstrating how Raman microscopy can be related to structural disorder and hydrogen retention, as it is a direct probe of chemical bonds and atomic structure. In particular, we highlight the fact that Raman microscopy can be used to estimate the hydrogen content and bonds to other elements as well as how it evolves under heating. We also present state-of-the-art Raman analyses of beryllium- and tungsten-based materials, and finally, we draw some perspectives regarding boron-based deposits.</p

    Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Crotia

    No full text
    In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaignwas recently completed. During that period, 345 samples of ne fraction of aerosols were collected on stretched Te on lters. All samples were analyzed by Ion Beam Analysis techniques (PIXE and PIGE) and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where city of Rijeka is located, common are long periods of calm weather. As a consequence, during these periods, air pollution is steadily increasing. To pin point and characterize local, mostly industrial, air pollution sources, we used only samples collected during the extended calm periods. Speed of 1.5 m/s was used as a cut-o wind speed. In this way, 188 samples were isolated and statistically evaluated by means of Positive Matrix Factorization. The results show that the major, local pollution sources are the following: secondary sulfates, heavy oil combustion, auto, smoke, road dust, industry iron and port activities. As expected, natural components of aerosol pollution such as soil and sea salt are dramatically reduced. Keywords: Fine particles, PM2.5, Ion beam analysis, LIPM, Positive Matrix Factorization, Air pollution sources © The Author

    Semi-empirical parameterization of HI/p L-shell X-ray production cross section ratios in Bi for Heavy Ion PIXE

    No full text
    Abstract Quantitative analysis of materials from Heavy Ion PIXE spectra remains impeded by the lack of reliable X-ray production cross section (XPCS) data. Although efforts at experimental Heavy Ion induced XPCS measurements still continue, Multiple Ionisation (MI) effects, which are not fully described by theory, render simulations of heavy ion PIXE data unreliable for large Z1/Z2 collisions, especially at low energies. This is also exacerbated by the random selection of projectile-target combinations for measured and reported experimental data available to validate theory. This study explored heavy ion induced X-ray production cross section deviations from those induced by protons at the same ion velocity. This enabled evaluations of the degree to which cross sections are enhanced through MI effects, with the aim of predicting XPCS due to heavy ion impact. The evaluation was carried out through the scaling of experimental heavy ion to theoretical proton cross section ratios (R), which were then used for the interpolation of XPCS in the same target element for ‘missing’ projectiles within the range of evaluation. Here we present measurements of heavy ion induced total L-shell XPCS in Bi, carried out to determine HI/p MI induced deviations due to C, F, Cl and Ti projectiles at an ion velocity range of (0.2–1.0) MeV/nucleon

    Helium load on W-O coatings grown by pulsed laser deposition

    Get PDF
    W-O deposits with complex morphologies and significant He contents will growth on the surface of plasma facing components exposed to He discharges. To mimic the re/co-deposition process, W-O coatings were loaded with He by implanting He+ ions on W films grown by pulsed laser deposition (PLD). The use of appropriate PLD experimental parameters such as pressurised Ar or He background atmospheres induces the deposition of porous or compact W structures enhancing afterwards the gathering of different amounts of O under exposure to atmospheric air. After multiple ion implantation stages using 150 keV, 100 keV and 50 keV incident He+ ion beams with a total fluence of 5 × 1017 ion/cm2, significant amounts of He were identified in porous coatings by Rutherford backscattering (RBS). Time-of-flight elastic recoil detection (ToF-ERDA) measurements showed that most of the implanted He was already released from the porous coatings five month after implantation, while for the case of compact layers the He content remains significant at deeper layers and smoothly decrease towards the surface, as result of a different morphology and nanostructure. The proposed method involving PLD and ion implantation seems adequate to produce W-O films load by He that may be used as reference samples for fusion investigations

    Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Full text link
    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) (http://www-nds.iaea.org/ibandl) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique. © 2015 Elsevier B.V. All rights reserved

    Development of a reference database for Ion Beam Analysis and future perspectives

    No full text
    Ion Beam Analysis (IBA) is a set of material characterization techniques using energetic ion beams. IBA provides information about composition and the depth profile of elements in the near-surface layers of a sample, from the energy spectra of backscattered primary particles, recoils, nuclear reaction products or emitted γ-radiation. All IBA methods presuppose knowledge of the differential cross-section data however, only for strict Rutherford scattering is the cross-section known exactly. In order to address the data needs of the IBA community, the IAEA initiated the Coordinated Research Project (CRP) "Development of a Reference Database for Ion Beam Analysis" in 2005 which will conclude in 2010. The project focuses on the measurement, assessment, evaluation and benchmarking of elastic scattering and reaction cross sections. Data measured in this work have been incorporated in the IBANDL database (http://www-nds.iaea.org/ibandl/), whereas the evaluated cross-sections (calculated from the fit to the data of a nuclear model) are made available to the community through the on-line calculator SigmaCalc (http://www-nds.iaea.org/sigmacalc/).A summary of the results of the CRP activity is presented, and ways to further develop nuclear data for IBA are indicated. In particular, a newly proposed CRP devoted to particle induced gamma-ray emission is described

    Tungsten surface enrichment in EUROFER and Fe-W model systems studied by high-resolution time-of-flight rutherford backscattering spectroscopy

    Get PDF
    Time-of-flight Rutherford backscattering spectroscopy (ToF-RBS) with incident heavy ions offers a substantially improved depth resolution compared to conventional RBS with incident He ions. The new Garching ToF-RBS detector is located at a scattering angle of 150° with a free flight path of 1.313 m and a time resolution of 600 ps. The experimentally achieved depth resolution at the surface of W-containing Fe samples is 2–3 nm using incident Si ions. Model systems consisting of Fe layers with 0.7, 1.5 and 4.2 at% W and EUROFER steel (containing 0.34 at% W + Ta) were eroded by 200 eV D ions to a fluence of 1023 D/m2 at 310 K and 900 K. W depth profiles were measured using ToF-RBS, light impurities at the surface were detected using time-of-flight elastic recoil detection analysis (ToF-ERDA). The data sets from the two techniques were analyzed self-consistently. In all cases W enrichment at the surface was observed. The enrichment at 310 K is in good agreement with SDTrimSP simulations if the experimentally achieved depth resolution is taken into account. Annealing of the model systems with 0.7 and 1.5 at% W to 900 K for 10 h in vacuum resulted also in a W-enriched surface layer. Keywords: Rutherford Backscattering Spectroscopy, RBS, ToF-RBS, Tungsten surface enrichment, EUROFER, MultiSIMNR

    Deuterium and helium retention in W and W-Ta coatings irradiated with energetic ion beams

    Get PDF
    Different studies reveal the behaviour of Ta alloying to decrease deuterium retention in tungsten bulk materials aiming to be used for nuclear fusion applications. In this work, W and W-5 %Ta coatings were produced via magnetron sputtering techniques. The elemental composition of the samples and the spread of Ta in the W lattice was confirmed by GDOES, PIXE and by μ-PIXE, respectively. Sets of W and W-Ta coatings were simultaneously irradiated with a single 2H+2 or with sequential 4He+/2H+2 ion beam implantations using incident energies of 30 keV and ion fluences of 5 × 1017 ion/cm2. The irradiated samples were analysed by NRA/RBS and by ToF-ERDA to quantify the retained deuterium and helium amounts. The results reveal significantly lower contents of both isotopes in W-Ta
    corecore