6 research outputs found

    Mechanochemical Synthesis of Fluorine-Containing Co-Doped Zeolitic Imidazolate Frameworks for Producing Electrocatalysts

    Get PDF
    Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR.Peer Reviewe

    Metal-support interaction: The key factor governing activity of Pd/SnO2 catalyst for denitration of ground water

    Get PDF
    Two mesoporous nanocristalline Pd/SnO2 catalysts were prepared by modified solgel technique differing in the pH conditions (pH = 2 and 9.5) of the synthesis of their supports. Samples achieved different activity and selectivity in water denitration reaction using hydrogen. XPS results of reduced samples indicate a strong interaction between the Pd and the Sn possibly as a result of electron shift from Sn to Pd. The solid solution of Pd2+ and SnO2 is formed by taking O from the surface of the support. In such a way some SnO2-X species may stay onto the surface and be responsible for its pronounced activity

    Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions

    Get PDF
    Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2

    Graphene‐Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions

    Get PDF
    2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.Peer Reviewe

    Structural Changes of Highly Active Pd/MeOx (Me = Fe, Co, Ni) during Catalytic Methane Combustion

    No full text
    Fe2O3, Co3O4 and NiO nanoparticles were prepared via a citrate method and further functionalized with Pd by impregnation. The pure oxides as well as Pd/Fe2O3, Pd/Co3O4, and Pd/NiO (1, 5 and 10 wt % Pd) were employed for catalytic methane combustion under methane lean (1 vol %)/oxygen rich (18 vol %, balanced with nitrogen) conditions. Already, the pure metal oxides showed a high catalytic activity leading to complete conversion temperature of T100 ≤ 500 °C. H2-TPR (Temperature-programmed reduction) experiments revealed that Pd-functionalized metal oxides exhibited enhanced redox activity compared to the pure oxides leading to improved catalytic combustion activity at lower temperatures. At a loading of 1 wt % Pd, 1Pd/Co3O4 (T100 = 360 °C) outperforms 1Pd/Fe2O3 (T100 = 410 °C) as well as 1Pd/NiO (T100 = 380 °C). At a loading of 10 wt % Pd, T100 could only be slightly reduced in all cases. 1Pd/Co3O4 and 1Pd/NiO show reasonable stability over 70 h on stream at T100. XPS (X-ray photoelectron spectroscopy) and STEM (Scanning transmission electron microscopy) investigations revealed strong interactions between Pd and NiO as well as Co3O4, respectively, leading to dynamic transformations and reoxidation of Pd due to solid state reactions, which leads to the high long-term stability

    Graphene‐Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions

    No full text
    2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.Peer Reviewe
    corecore