116 research outputs found

    'No place to hide' : stalking victimisation and its psycho-social effects

    Get PDF
    Stalking victimisation has for a long time been ignored and minimised, and it has been traditionally regarded as a rare and mostly β€˜celebrity-related’ phenomenon. However, research shows that stalking is far more common, and its impact can be serious and far-reaching. This article reveals and discusses the psycho-social effects of stalking, drawing on the in-depth accounts of twenty-six selfidentified victims who were interviewed as part of a study that explored the impact of stalking based on the victims’ voices and experiences. The study found that stalking victimisation is lifechanging and its psycho-social effects are complex, long-term and often traumatic. The article concludes by considering the implications of these findings where the need is stressed to improve criminological understanding of stalking and its unseen psycho-social harms so that victims and their cases are properly dealt with by the criminal justice system and society

    Genomorama: genome visualization and analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to visualize genomic features and design experimental assays that can target specific regions of a genome is essential for modern biology. To assist in these tasks, we present Genomorama, a software program for interactively displaying multiple genomes and identifying potential DNA hybridization sites for assay design.</p> <p>Results</p> <p>Useful features of Genomorama include genome search by DNA hybridization (probe binding and PCR amplification), efficient multi-scale display and manipulation of multiple genomes, support for many genome file types and the ability to search for and retrieve data from the National Center for Biotechnology Information (NCBI) Entrez server.</p> <p>Conclusion</p> <p>Genomorama provides an efficient computational platform for visualizing and analyzing multiple genomes.</p

    SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis)

    Get PDF
    The Bacillus cereus group of bacteria is an important group including mammalian and insect pathogens, such as B. anthracis, the anthrax bacterium, B. thuringiensis, used as a biological pesticide and B. cereus, often involved in food poisoning incidents. To characterize the population structure and epidemiology of these bacteria, five separate multilocus sequence typing (MLST) schemes have been developed, which makes results difficult to compare. Therefore, we have developed a database that compiles and integrates MLST data from all five schemes for the B. cereus group, accessible at http://mlstoslo.uio.no/. Supertree techniques were used to combine the phylogenetic information from analysis of all schemes and datasets, in order to produce an integrated view of the B. cereus group population. The database currently contains strain information and sequence data for 1029 isolates and 26 housekeeping gene fragments, which can be searched by keywords, MLST scheme, or sequence similarity. Supertrees can be browsed according to various criteria such as species, isolate source, or genetic distance, and subtrees containing strains of interest can be extracted. Besides analysis of the available data, the user has the possibility to enter her/his own sequences and compare them to the database and/or include them into the supertree reconstructions

    Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    Get PDF
    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium

    A putative mobile genetic element carrying a novel type IIF restriction-modification system (PluTI)

    Get PDF
    Genome comparison and genome context analysis were used to find a putative mobile element in the genome of Photorhabdus luminescens, an entomopathogenic bacterium. The element is composed of 16-bp direct repeats in the terminal regions, which are identical to a part of insertion sequences (ISs), a DNA methyltransferase gene homolog, two genes of unknown functions and an open reading frame (ORF) (plu0599) encoding a protein with no detectable sequence similarity to any known protein. The ORF (plu0599) product showed DNA endonuclease activity, when expressed in a cell-free expression system. Subsequently, the protein, named R.PluTI, was expressed in vivo, purified and found to be a novel type IIF restriction enzyme that recognizes 5β€²-GGCGC/C-3β€² (/ indicates position of cleavage). R.PluTI cleaves a two-site supercoiled substrate at both the sites faster than a one-site supercoiled substrate. The modification enzyme homolog encoded by plu0600, named M.PluTI, was expressed in Escherichia coli and shown to protect DNA from R.PluTI cleavage in vitro, and to suppress the lethal effects of R.PluTI expression in vivo. These results suggested that they constitute a restriction–modification system, present on the putative mobile element. Our approach thus allowed detection of a previously uncharacterized family of DNA-interacting proteins

    Testing and Validation of High Density Resequencing Microarray for Broad Range Biothreat Agents Detection

    Get PDF
    Rapid and effective detection and identification of emerging microbiological threats and potential biowarfare agents is very challenging when using traditional culture-based methods. Contemporary molecular techniques, relying upon reverse transcription and/or polymerase chain reaction (RT-PCR/PCR) provide a rapid and effective alternative, however, such assays are generally designed and optimized to detect only a limited number of targets, and seldom are capable of differentiation among variants of detected targets. To meet these challenges, we have designed a broad-range resequencing pathogen microarray (RPM) for detection of tropical and emerging infectious agents (TEI) including biothreat agents: RPM-TEI v 1.0 (RPM-TEI). The scope of the RPM-TEI assay enables detection and differential identification of 84 types of pathogens and 13 toxin genes, including most of the class A, B and C select agents as defined by the Centers for Disease Control and Prevention (CDC, Atlanta, GA). Due to the high risks associated with handling these particular target pathogens, the sensitivity validation of the RPM-TEI has been performed using an innovative approach, in which synthetic DNA fragments are used as templates for testing the assay's limit of detection (LOD). Assay specificity and sensitivity was subsequently confirmed by testing with full-length genomic nucleic acids of selected agents. The LOD for a majority of the agents detected by RPM-TEI was determined to be at least 104 copies per test. Our results also show that the RPM-TEI assay not only detects and identifies agents, but is also able to differentiate near neighbors of the same agent types, such as closely related strains of filoviruses of the Ebola Zaire group, or the Machupo and Lassa arenaviruses. Furthermore, each RPM-TEI assay results in specimen-specific agent gene sequence information that can be used to assess pathogenicity, mutations, and virulence markers, results that are not generally available from multiplexed RT-PCR/PCR-based detection assays

    Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus

    Get PDF
    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the β€œlate” region, the β€œlysogeny-lysis” region and the β€œearly” region. BtCS33 exhibited high similarity with several phages, B. cereus phage WΞ² and some variants of WΞ², in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage WΞ² and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage WΞ² may have a common distant ancestor

    Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    Get PDF
    Plague, caused by Yersinia pestis, is one of the oldest and most dangerous diseases in human history, and has claimed millions of lives in the three major historical pandemics. Although panic caused by the Black Death is fading, the threat of the reemergence of plague pandemics still exists, with the additional potential of misuse in biowarfare or bioterrorism. Rapid on-site detection and identification of the pathogen is of paramount significance for timely implementation of effective countermeasures. TaqMan probe-based real-time PCR assays can give quick and accurate identification; however, the need for cold delivery and storage prevents its potential on-site application. The objective of this study was to develop a stable PCR system for easy delivery and storage under room temperature, which is vital for conventional plague surveillance and for preparedness in public health emergencies. We present a solution to this particular issue, hoping that it is helpful to future applications

    Genetic variation and linkage disequilibrium in Bacillus anthracis

    Get PDF
    We performed whole-genome amplification followed by hybridization of custom-designed resequencing arrays to resequence 303β€…kb of genomic sequence from a worldwide panel of 39 Bacillus anthracis strains. We used an efficient algorithm contained within a custom software program, UniqueMER, to identify and mask repetitive sequences on the resequencing array to reduce false-positive identification of genetic variation, which can arise from cross-hybridization. We discovered a total of 240 single nucleotide variants (SNVs) and showed that B. anthracis strains have an average of 2.25 differences per 10,000 bases in the region we resequenced. Common SNVs in this region are found to be in complete linkage disequilibrium. These patterns of variation suggest there has been little if any historical recombination among B. anthracis strains since the origin of the pathogen. This pattern of common genetic variation suggests a framework for recognizing new or genetically engineered strains

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities
    • …
    corecore