179 research outputs found

    Problems associated with the utilization of algae in bioregenerative life support systems

    Get PDF
    A workshop was conducted to identify the potential problems associated with the use of microalgae in biorregenerative life support systems, and to identify algae rlated research issues that must be addressed through space flight experimentation. Major questions to be resolved relate to the choice of algal species for inclusion in a bioregenerative life support system, their long term behavior in the space environment, and the nature of the techniques required for the continuous growth of algae on the scale required. Consideration was given to the problems associated with the conversion of algal biomass into edible components. Specific concerns were addressed and alternative transformation processes identified and compared. The workshop identified the following major areas to be addressed by space flight experimentation: (1) long term culture stability, (2) optimal design of algal growth reactors, and (3) post growth harvesting and processing in the space environment

    Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Get PDF
    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed

    Algal culture studies for CELSS

    Get PDF
    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities

    Characterization of Photosynthetic Efficiency and Growth of Selected Microalgae in Dense Culture

    Get PDF
    An objective of the Aquatic Species Program is the development of large scale culturing systems for the production of fuels from lipid-rich microalgae. A major constraint to any such culturing system is the provision of sufficient light in the most economical manner possible, which has led to the use of shallow outdoor ponds that are illuminated using natural sunllght

    Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    Get PDF
    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included

    An analysis of the productivity of a CELSS continuous algal culture system

    Get PDF
    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system

    On-line mass spectrometry: membrane inlet sampling

    Get PDF
    Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O2 evolution versus O2 uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H2 generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and the experiments that have been conducted with MIMS

    Characterization of inhibitory effects of NH 2 OH and its N-methyl derivatives on the O 2 -evolving complex of Photosystem II

    Full text link
    Inorganic cofactors (Mn, Ca 2+ and Cl - ) are essential for oxidation of H 2 O to O 2 by Photosystem II. The Mn reductants NH 2 OH and its N-methyl derivatives have been employed as probes to further examine the interactions between these species and Mn at the active site of H 2 O oxidation. Results of these studies show that the size of a hydroxylamine derivative regulates its ability to inactivate O 2 evolution activity, and that this size-dependent inhibition behavior arises from the protein structure of Photosystem II. A set of anions (Cl - , F - and SO 4 2- ) is able to slow NH 2 OH and CH 3 NHOH inactivation of intact Photosystem II membranes by exerting a stabilizing influence on the extrinsic 23 and 17 kDa polypeptides. In contrast to this non-specific anion effect, only Cl - is capable of attenuating CH 3 NHOH and (CH 3 ) 2 NOH inhibition in salt-washed preparations lacking the 23 and 17 kDa polypeptides. However, Cl - fails to protect against NH 2 OH inhibition in salt-washed membranes. These results indicate that the attack by NH 2 OH and its N-methyl derivatives on Mn occurs at different sites in the O 2 -evolving complex. The small reductant NH 2 OH acts at a Cl - -insensitive site whereas the inhibitions by CH 3 NHOH and (CH 3 ) 2 NOH involve a site that is Cl - sensitive. These findings are consistent with earlier studies showing that the size of primary amines controls the Cl - sensitivity of their binding to Mn in the O 2 -evolving complex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43537/1/11120_2004_Article_BF00046773.pd

    Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight

    Get PDF
    Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions
    corecore