472 research outputs found

    An Approach to Retrieve BRDF from Satellite and Airborne Measurements of Surface-Reflected Radiance Based on Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Get PDF
    Bi-directional Reflection Distribution Function (BRDF) defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT) modeling. Measurements of reflected radiance by satellite- and air-borne sensors provide information about anisotropy of surface reflection. Atmospheric correction needs to be performed to derive BRDF from the reflected radiance. Common approach for BRDF retrievals consists of the use of kernel-based BRDF and RT modeling that needs to be done anew at every step of the iterative process. The kernels weights are obtained by minimization of the difference between measured and modeled radiance. This study develops a new method of retrieving kernel-based BRDF that requires RT calculations to be done only once. The method employs the exact analytical expression of radiance at any atmospheric level through the solutions of two auxiliary atmosphere-only RT problems and the surface-reflected radiance at the surface level. The latter is related to BRDF and solutions of the auxiliary RT problems by a Fredholm integral equation of the second kind. The approach requires to perform RT calculations one time before the iterations. It can use observations taken at different atmospheric conditions assuming that surface conditions remain unchanged during the time span of observations. The algorithm accurately catches zero weights of the kernels that may be a concern if the number of kernels is greater than 3 in current mainstream approaches. The study presents numerical tests of the BRDF retrieval algorithm for various surface and atmospheric conditions

    TOURIST MARKETING

    Get PDF

    Surgical access to separate branches of the cat vestibular nerve

    Get PDF
    A posteroventral approach for access to separate branches of the cat vestibular nerve is presented which permits simultaneous surgical access to the ampullary and otolithic nerves. Surgical procedures are discussed

    A Method of Retrieving BRDF from Surface Reflected Radiance Using Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Get PDF
    BRDF defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT) modeling used in aerosol retrievals, cloud retrievals, atmospheric modeling and other applications. Ground based measurements of reflected radiance draw increasing attention as a source of information about anisotropy of surface reflection. Derivation of BRDF from surface radiance requires atmospheric correction. This study develops a new method of retrieving BRDF on its whole domain making it immediately suitable for further atmospheric RT modeling applications. The method is based on the integral equation relating surface reflected radiance, BRDF and solutions of two auxiliary atmosphere-only RT problems. The method requires kernel-based BRDF. The weights of the kernels are obtained with a quickly converging iterative procedure. RT modeling has to be done only one time before the start of iterative process

    Iterative Discrete Ordinates Solution of the Equation for the Surface-Reflected Radiance

    Get PDF
    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles

    Bullous Dermolysis of the Newborn: Four New Cases and Clinical Review

    Full text link
    Bullous dermolysis of the newborn ( BDN ) is a subtype of dystrophic epidermolysis bullosa caused by mutations in type VII collagen resulting in disorganized anchoring fibrils and sublamina densa blister formation. Disease activity is usually confined to the first year of life, with restoration of physiologic type VII collagen localization. We report four new cases of BDN and review the utility of immunofluorescence mapping in establishing the diagnosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101784/1/pde12230.pd
    corecore