15 research outputs found

    A 400GHz fMAX Fully Self-Aligned SiGe:C HBT Architecture

    Full text link
    peer reviewedAn improved fully self-aligned SiGe:C HBT architecture featuring a single-step epitaxial collector-base process is described. An fMAX value of 400 GHz is reached by structural as well as intrinsic advancements made to the HBT device

    Intermolecular proton transfer induced by excess electron attachment to adenine(formic acid) n (n = 2, 3) hydrogen-bonded complexes

    No full text
    Abstract The propensity of the neutral complexes between both adenine and 9-methyladenine (A/MA) with formic acid (FA) in 1:2 and 1:3 stoichiometries to bind an excess electron was studied using photoelectron spectroscopy and quantum chemistry computational methods. Although an isolated canonical adenine does not support bound valence anions, solvation by one formic acid molecule stabilizes the excess electron on adenine. The adiabatic electron affinities of the A/MA(FA) 2,3 complexes span a range of 0.8-1.23 eV indicating that the anions of 1:2 and 1:3 stoichiometries are substantially more stable than the anionic A-FA dimer (EA = 0.67 eV), which we studied previously and an attachment of electron triggers double-BFPT, confirmed at the MPW1K level of theory, in all the considered systems. Hence, the simultaneous involvement of several molecules capable of forming cyclic hydrogen bonds with adenine remarkably increases its ability to bind an excess electron. The calculated vertical detachment energies for the most stable anions correspond well with those obtained using photoelectron spectroscopy. The possible biological significance of our findings is briefly discussed

    Photoelectron spectroscopic studies of 5-halouracil anions

    No full text
    The parent negative ions of 5-chlorouracil, UCl− and 5-fluorouracil, UF− have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl− and UF− and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr−, we did not observe it, the mass spectrum exhibiting only Br− fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases
    corecore