58 research outputs found

    Triadic fuzzy Galois connections as ordinary connections

    Get PDF
    Abstract-The paper presents results on representation of the basic structures related to ternary fuzzy relations by the structures related to ordinary ternary relations, such as Galois connections, closure operators, and trilattices (structures of maximal Cartesian subrelations). These structures appear as the fundamental structures in relational data analysis such as formal concept analysis or association rules. We prove several representation theorems that allow us to automatically transfer some of the known results from the ordinary case to fuzzy case. The transfer is demonstrated by examples. I. INTRODUCTION Relations play a fundamental role in mathematics, computer science, and their applications. Many results about ordinary relations have been generalized to the setting of fuzzy relations in the past. There has always been a fundamental question of how the various fuzzifications are related to the ordinary notions and results. Needless to say, this question is important both from a practical and theoretical point of view and is treated to some extent in textbooks, see e.g. In this paper we deal with basic structures associated to ternary relations that appear as fundamental ones in the methods of relational data analysis, namely the closure-like structures such as Galois connections, closure operators, structures of their fixpoints and the like. Such structures appear e.g. in formal concept analysis The most common way of looking at the relationship between ordinary notions and their fuzzy counterparts is in terms of a-cuts of fuzzy relations (see e.g. [15]) but there are additional possible views at the question as well. One of them, utilized in this paper, is provided in [3, Section 3.1.2]. Our paper is organized as follows. We first provide preliminaries in Section II. In Section III, we introduce the Galoi

    Type IV fimbrial subunit protein ApfA contributes to protection against porcine pleuropneumonia

    Get PDF
    Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae accounts for serious economic losses in the pig farming industry worldwide. We examined here the immunogenicity and protective efficacy of the recombinant type IV fimbrial subunit protein ApfA as a single antigen vaccine against pleuropneumonia, or as a component of a multi-antigen preparation comprising five other recombinant antigens derived from key virulence factors of A. pleuropneumoniae (ApxIA, ApxIIA, ApxIIIA, ApxIVA and TbpB). Immunization of pigs with recombinant ApfA alone induced high levels of specific serum antibodies and provided partial protection against challenge with the heterologous A. pleuropneumoniae serotype 9 strain. This protection was higher than that engendered by vaccination with rApxIVA or rTbpB alone and similar to that observed after immunization with the tri-antigen combination of rApxIA, rApxIIA and rApxIIIA. In addition, rApfA improved the vaccination potential of the penta-antigen mixture of rApxIA, rApxIIA, rApxIIIA, rApxIVA and rTbpB proteins, where the hexa-antigen vaccine containing rApfA conferred a high level of protection on pigs against the disease. Moreover, when rApfA was used for vaccination alone or in combination with other antigens, such immunization reduced the number of pigs colonized with the challenge strain. These results indicate that ApfA could be a valuable component of an efficient subunit vaccine for the prevention of porcine pleuropneumonia

    Simultaneous Determination of Antibodies to Pertussis Toxin and Adenylate Cyclase Toxin Improves Serological Diagnosis of Pertussis

    Get PDF
    Serological diagnosis of pertussis is mainly based on anti-pertussis toxin (PT) IgG antibodies. Since PT is included in all acellular vaccines (ACV), serological assays do not differentiate antibodies induced by ACVs and infection. Adenylate cyclase toxin (ACT) is not included in the ACVs, which makes it a promising candidate for pertussis serology with the specific aim of separating infection- and ACV-induced antibodies. A multiplex lateral flow test with PT and ACT antigens was developed to measure serum antibodies from pertussis-seropositive patients (n = 46), healthy controls (n = 102), and subjects who received a booster dose of ACV containing PT, filamentous hemagglutinin, and pertactin (n = 67) with paired sera collected before and one month after the vaccination. If the diagnosis was solely based on anti-PT antibodies, 98.5-44.8% specificity (before and after vaccination, respectively) and 78.2% sensitivity were achieved, whereas if ACT was used in combination with PT, the sensitivity of the assay increased to 91.3% without compromising specificity. No increase in the level of anti-ACT antibodies was found after vaccination. This exploratory study indicates that the use of ACT for serology would be beneficial in combination with a lower quantitative cutoff for anti-PT antibodies, and particularly in children and adolescents who frequently receive booster vaccinations

    Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores

    Get PDF
    Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC− toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux

    Phospholipase A activity of adenylate cyclase toxin?

    No full text

    Pore-Forming and Enzymatic Activities of Bordetella pertussis Adenylate Cyclase Toxin Synergize in Promoting Lysis of Monocytes

    No full text
    Bordetella adenylate cyclase (AC) toxin-hemolysin (CyaA) targets myeloid phagocytes expressing the α(M)β(2) integrin (CD11b/CD18) and delivers into their cytosol an AC enzyme that converts ATP into cyclic AMP (cAMP). In parallel, CyaA acts as a hemolysin, forming small membrane pores. Using specific mutations, we dissected the contributions of the two activities to cytolytic potency of CyaA on J774A.1 murine monocytes. The capacity of AC to penetrate cells and deplete cytosolic ATP was essential for promoting lysis and the enzymatically inactive but fully hemolytic CyaA-AC(−) toxoid exhibited a 15-fold-lower cytolytic capacity on J774A.1 cells than intact CyaA. Moreover, a two- or fourfold drop of specific hemolytic activity of the CyaA-E570Q and CyaA-E581P mutants was overpowered by an intact capacity to dissipate cytosolic ATP into cAMP, allowing the less hemolytic proteins to promote lysis of J774A.1 cells as efficiently as intact CyaA. However, an increased hemolytic activity, due to lysine substitutions of glutamates 509, 516, and 581 in the pore-forming domain, conferred on AC(−) toxoids a correspondingly enhanced cytolytic potency. Moreover, a threefold increase in hemolytic activity could override a fourfold drop in capacity to convert cellular ATP to cAMP, conferring on the CyaA-E581K construct an overall twofold increased cytolytic potency. Hence, although appearing auxiliary in cytolytic action of the toxin on nucleated cells, the pore-forming activity can synergize with ATP-depleting activity of the cell-invasive AC enzyme and complement its action toward maximal cytotoxicity

    Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

    No full text
    The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient ‘contact weapons’ that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections

    Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain

    No full text
    The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers forms small cation-selective pores that permeabilize the cell membrane for potassium efflux, which can provoke colloid-osmotic (oncotic) cell lysis. The other two activities are due to CyaA conformers that transiently form calcium influx conduits in the target cell membrane and translocate the adenylate cyclase (AC) enzyme into cytosol of cells. A fourth putative biological activity has recently been reported; an intrinsic phospholipase A (PLA) activity was claimed to be associated with the CyaA polypeptide and be involved in the mechanism of translocation of the AC enzyme polypeptide across cell membrane lipid bilayer. However, the conclusions drawn by the authors contradicted their own results and we show them to be erroneous. We demonstrate that highly purified CyaA is devoid of any detectable phospholipase A1 activity and that contrary to the published claims, the two putative conserved phospholipase A catalytic residues, namely the Ser606 and Asp1079 residues, are not involved in the process of membrane translocation of the AC domain of CyaA across target membranes

    Molecular interactions of polyvinylpyrrolidone and cellulose acetate butyrate solutions in dimethylformamide

    Get PDF
    The ultrasonic velocity, density, and ViScosIties of polyvinylpYITolidone (PVP) and cellulose acetate butyrate (CAB) solutions in dimethyllonnamide (DMF) have been measured in the temperature range, 303K-323 K. Using these data, free energy of mixing, solvation number and different polymer-solvent interaction parameters for the solution systems have been calculated to know the presence of molecular interactions in the system. The trends in the variation of the solution property parameters indicate the existence of positive molecular interactions between tile polymer and the solvent in solutions. The results also show the presence of higher degree of interaction between I'VP and DMF in solution compared to CAB and DMF
    corecore