55 research outputs found

    Metal hierarchical patterning by direct nanoimprint lithography

    Get PDF
    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles

    Angstrofluidics:walking to the limit

    Get PDF
    Angstrom-scale fluidic channels are ubiquitous in nature, and play an important role in regulating cellular traffic, signaling, and responding to stimuli. Synthetic channels are now a reality with the emergence of several cutting-edge bottom-up and top-down fabrication methods. In particular, the use of atomically thin two dimensional (2D) materials and nanotubes as components to build fluidic conduits has pushed the limits of fabrication to the Angstrom-scale. Here, we provide an overview of the recent developments in the fabrication methods for nano- and angstrofluidic channels while categorizing them on the basis of dimensionality (0D pores, 1D tubes, 2D slits), along with the latest advances in measurement techniques. We discuss the ionic transport governed by various stimuli in these channels and draw comparison of ionic mobility, streaming and osmotic power, with varying pore sizes across all the dimensionalities. Towards the end of the review, we highlight the unique future opportunities in the development of smart ionic devices.Comment: Keywords: Angstrofluidics, nanofluidics, confinement, ion transport, 2D materials, molecular transport 6 figures, review articl

    Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: synthesis and optical properties

    Get PDF
    Focusing light at sub-wavelength region opens up interesting applications in optical sensing and imaging beyond the diffraction limit. In the past, tapered Au wires with carved gratings have been employed to achieve nanofocusing. The fabrication process however, is expensive and the obtained wires are polycrystalline with high surface roughness. A chemical synthetic method overcoming these hurdles should be an attractive alternative. Here, we report a method to chemically synthesize Au microcrystals (∼10 μm) bearing pentagonal bipyramidal morphology with surface corrugations assignable to high index planes. The method is a single step solid state synthesis at a temperature amenable to common substrates. The microcrystals are tapered at both ends forming sharp tips (∼55 nm). Individual microcrystals have been used as pick and probe SERS substrates for a dye embedded in a polymer matrix. The unique geometry of the microcrystal also enables light propagation across its length

    Water friction in nanofluidic channels made from two-dimensional crystals.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-25Publication status: PublishedFunder: European Research Council; Grant(s): 852674Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels

    Stray magnetic field imaging of thin exfoliated iron halides flakes

    Full text link
    Magnetic van der Waals materials are often proposed for use in future spintronic devices, aiming to leverage the combination of long-range magnetic order and near-atomic thinness to produce energy-efficient components. One class of material that has been discussed in this context are the iron halides FeCl2_2 and FeBr2_2, which are A-type antiferromagnets with strong uniaxial magnetocrystalline anisotropy. However, despite characterization of the bulk materials, the possibility for sustaining the magnetic behaviors that would underpin such applications in thin flakes has not been investigated. In this work, we use nitrogen-vacancy (NV) center microscopy to quantitatively image magnetism in individual exfoliated flakes of these iron halides, revealing the absence of magnetic remanence, a weak induced magnetization under bias field and variable behavior versus temperature. We show that our results are consistent with the antiferromagnetic behavior of the bulk material with a soft ferromagnetic uncompensated layer, indicating that extended (>1 μ>1~\mum) ferromagnetic domains are not sustained even at low temperatures (down to 4 K). Finally, we find that the magnetic order is strongly affected by the sample preparation, with a surprising diamagnetic order observed in a thin, hydrated sample.Comment: 15 pages, 13 figure

    Anomalously low dielectric constant of confined water

    Get PDF
    The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement

    Stray magnetic field imaging of thin exfoliated iron halides flakes

    Get PDF
    Magnetic van der Waals materials are often proposed for use in future spintronic devices, aiming to leverage the combination of long-range magnetic order and near-atomic thinness to produce energy-efficient components. One class of material that has been discussed in this context are the iron halides FeCl2 and FeBr2, which are A-type antiferromagnets with strong uniaxial magnetocrystalline anisotropy. However, despite characterization of the bulk materials, the possibility for sustaining the magnetic behaviors that would underpin such applications in thin flakes has not been investigated. In this work, we use nitrogen-vacancy center microscopy to quantitatively image magnetism in individual exfoliated flakes of these iron halides, revealing the absence of magnetic remanence, a weak induced magnetization under bias field, and variable behavior versus temperature. We show that our results are consistent with the antiferromagnetic behavior of the bulk material with a soft ferromagnetic uncompensated layer, indicating that extended (&gt;1µm) ferromagnetic domains are not sustained even at low temperatures (down to 4 K). Finally, we find that the magnetic order is strongly affected by the sample preparation, with a surprising diamagnetic behavior observed in a thin, hydrated sample.<br/

    Liquid-activated quantum emission from native hBN defects for nanofluidic sensing

    Get PDF
    Nanostructures made of two-dimensional (2D) materials have become the flagship of nanofluidic discoveries in recent years. By confining liquids down to a few atomic layers, anomalies in molecular transport and structure have been revealed. Currently, only indirect and ensemble averaged techniques have been able to operate in such extreme confinements, as even the smallest molecular fluorophores are too bulky to penetrate state-of-the-art single-digit nanofluidic systems. This strong limitation calls for the development of novel optical approaches allowing for the direct molecular imaging of liquids confined at the nanoscale. Here, we show that native defects present at the surface of hexagonal boron nitride (hBN) - a widely used 2D material - can serve as probes for molecular sensing in liquid, without compromising the atomic smoothness of their host material. We first demonstrate that native surface defects are readily activated through interactions with organic solvents and confirm their quantum emission properties. Vibrational spectra of the emitters suggest that their activation occurs through the chemisorption of carbon-bearing liquid molecules onto native hBN defects. The correlated activation of neighboring defects reveals single-molecule dynamics at the interface, while defect emission spectra offer a direct readout of the local dielectric properties of the liquid medium. We then harvest these effects in atomically smooth slit-shaped van der Waals channels, revealing molecular dynamics and increasing dielectric order under nanometre-scale confinement. Liquid-activated native defects in pristine hBN bridge the gap between solid-state nanophotonics and nanofluidics and open up new avenues for nanoscale sensing and optofluidics.Comment: 16 pages, 5 figure
    • …
    corecore