1,565 research outputs found
Probing two topological surface bands of Sb2Te3 by spin-polarized photoemission spectroscopy
Using high resolution spin- and angle-resolved photoemission spectroscopy, we
map the electronic structure and spin texture of the surface states of the
topological insulator Sb2Te3. In combination with density functional
calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied,
single spin-Dirac cone around the Fermi energy, which is topologically
protected. DFT obtains a spin polarization of the occupied Dirac cone states of
80-90%, which is in reasonable agreement with the experimental data after
careful background subtraction. Furthermore, we observe a strongly spin-orbit
split surface band at lower energy. This state is found at 0.8eV below the
Fermi level at the gamma-point, disperses upwards, and disappears at about
0.4eV below the Fermi level into two different bulk bands. Along the gamma-K
direction, the band is located within a spin-orbit gap. According to an
argument given by Pendry and Gurman in 1975, such a gap must contain a surface
state, if it is located away from the high symmetry points of the Brillouin
zone. Thus, the novel spin-split state is protected by symmetry, too.Comment: 8 pages, 10 figure
Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt
We report on a quantitative investigation of the spin-dependent quasiparticle
lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by
means of spin and angle-resolved photoemission spectroscopy. The experimental
spectra are compared in detail to state-of-the-art many-body calculations
within the dynamical mean field theory and the three-body scattering
approximation, including a full calculation of the one-step photoemission
process. From this comparison we conclude that although strong local many-body
Coulomb interactions are of major importance for the qualitative description of
correlation effects in Co, more sophisticated many-body calculations are needed
in order to improve the quantitative agreement between theory and experiment,
in particular concerning the linewidths. The quality of the overall agreement
obtained for Co indicates that the effect of non-local correlations becomes
weaker with increasing atomic number
Explicit Lie-Poisson integration and the Euler equations
We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson
integrators, preserving all Casimirs, can be constructed. The integrators are
extremely simple. Examples are the rigid body, a moment truncation, and a new,
fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho
Recommended from our members
Propagation modeling in a manufacturing environment
Wireless sensors which utilize low power spread spectrum data transmission have significant potential in industrial environments due to low cabling and installation costs. In addition, this technology imposes fewer constraints upon placement due to cable routing, allowing sensors to be installed in areas with poor access. Limitations are imposed on sensor and receiver placement by electromagnetic propagation effects in the industrial environment, including multipath and the presence of absorbing media. This paper explores the electromagnetic analysis of potential wireless sensor applications using commercially available finite element software. In addition, since the applications environment is often at least partially specified in electronic form using computer-aided drafting software, the importation of information from this software is discussed. Both three-dimensional and two-dimensional examples are presented which demonstrate the utility and limitations of the method
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Recommended from our members
Particle transport in plasma reactors
SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing
Generic 3D Representation via Pose Estimation and Matching
Though a large body of computer vision research has investigated developing
generic semantic representations, efforts towards developing a similar
representation for 3D has been limited. In this paper, we learn a generic 3D
representation through solving a set of foundational proxy 3D tasks:
object-centric camera pose estimation and wide baseline feature matching. Our
method is based upon the premise that by providing supervision over a set of
carefully selected foundational tasks, generalization to novel tasks and
abstraction capabilities can be achieved. We empirically show that the internal
representation of a multi-task ConvNet trained to solve the above core problems
generalizes to novel 3D tasks (e.g., scene layout estimation, object pose
estimation, surface normal estimation) without the need for fine-tuning and
shows traits of abstraction abilities (e.g., cross-modality pose estimation).
In the context of the core supervised tasks, we demonstrate our representation
achieves state-of-the-art wide baseline feature matching results without
requiring apriori rectification (unlike SIFT and the majority of learned
features). We also show 6DOF camera pose estimation given a pair local image
patches. The accuracy of both supervised tasks come comparable to humans.
Finally, we contribute a large-scale dataset composed of object-centric street
view scenes along with point correspondences and camera pose information, and
conclude with a discussion on the learned representation and open research
questions.Comment: Published in ECCV16. See the project website
http://3drepresentation.stanford.edu/ and dataset website
https://github.com/amir32002/3D_Street_Vie
- …