8 research outputs found
Studie způsobu otvírky kaverny PVE Dlouhé Stráně
PrezenčníNeuvedenoNeuveden
Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging
The accurate identification of glioblastoma progression remains an unmet clinical need. The aim of this prospective single-institutional study is to determine and validate thresholds for the main metabolite concentrations obtained by MR spectroscopy (MRS) and the values of the apparent diffusion coefficient (ADC) to enable distinguishing tumor recurrence from pseudoprogression. Thirty-nine patients after the standard treatment of a glioblastoma underwent advanced imaging by MRS and ADC at the time of suspected recurrence — median time to progression was 6.7 months. The highest significant sensitivity and specificity to call the glioblastoma recurrence was observed for the total choline (tCho) to total N-acetylaspartate (tNAA) concentration ratio with the threshold ≥1.3 (sensitivity 100.0% and specificity 94.7%). The ADCmean value higher than 1313 × 10−6 mm2/s was associated with the pseudoprogression (sensitivity 98.3%, specificity 100.0%). The combination of MRS focused on the tCho/tNAA concentration ratio and the ADCmean value represents imaging methods applicable to early non-invasive differentiation between a glioblastoma recurrence and a pseudoprogression. However, the institutional definition and validation of thresholds for differential diagnostics is needed for the elimination of setup errors before implementation of these multimodal imaging techniques into clinical practice, as well as into clinical trials
Radiotherapy of glioblastoma 15 years after the landmark Stupp’s trial: more controversies than standards?
The current standard of care of glioblastoma, the most common primary brain tumor in adults, has remained unchanged for over a decade. Nevertheless, some improvements in patient outcomes have occurred as a consequence of modern surgery, improved radiotherapy and up-to-date management of toxicity. Patients from control arms (receiving standard concurrent chemoradiotherapy and adjuvant chemotherapy with temozolomide) of recent clinical trials achieve better outcomes compared to the median survival of 14.6 months reported in Stupp’s landmark clinical trial in 2005. The approach to radiotherapy that emerged from Stupp’s trial, which continues to be a basis for the current standard of care, is no longer applicable and there is a need to develop updated guidelines for radiotherapy within the daily clinical practice that address or at least acknowledge existing controversies in the planning of radiotherapy
Spinal Metastasis in a Patient with Supratentorial Glioblastoma with Primitive Neuronal Component: A Case Report with Clinical and Molecular Evaluation
Glioblastoma (GBM) is regarded as an aggressive brain tumor that rarely develops extracranial metastases. Despite well-investigated molecular alterations in GBM, there is a limited understanding of these associated with the metastatic potential. We herein present a case report of a 43-year-old woman with frontal GBM with primitive neuronal component who underwent gross total resection followed by chemoradiation. Five months after surgery, the patient was diagnosed with an intraspinal GBM metastasis. Next-generation sequencing analysis of both the primary and metastatic GBM tissues was performed using the Illumina TruSight Tumor 170 assay. The number of single nucleotide variants observed in the metastatic sample was more than two times higher. Mutations in TP53, PTEN, and RB1 found in the primary and metastatic tissue samples indicated the mesenchymal molecular GBM subtype. Among others, there were two inactivating mutations (Arg1026Ile, Trp1831Ter) detected in the NF1 gene, two novel NOTCH3 variants of unknown significance predicted to be damaging (Pro1505Thr, Cys1099Tyr), one novel ARID1A variant of unknown significance (Arg1046Ser), and one gene fusion of unknown significance, EIF2B5-KIF5B, in the metastatic sample. Based on the literature evidence, the alterations of NF1, NOTCH3, and ARID1A could explain, at least in part, the acquired invasiveness and metastatic potential in this particular GBM case
Incidence of Hippocampal Metastases: Laterality and Implications for Unilateral Hippocampal Avoiding Whole Brain Radiotherapy
Introduction. Hippocampi sparing whole brain radiotherapy (WBRT) is an evolving approach in the treatment of patients with multiple brain metastases, pursuing mitigation of verbal memory decline as a consequence of hippocampal radiation injury. Accumulating data are showing different postradiotherapy changes in the left and right hippocampus with a theoretical proposal of only unilateral (dominant, left) hippocampal sparing during WBRT. Method. The aim of this retrospective study is to describe spatial distribution of brain metastases on MRI in a cohort of 260 patients (2595 metastases) and to evaluate distribution separately in the left and right hippocampus and in respective hippocampal avoiding zones (HAZ, region with subtherapeutic radiation dose), including evaluation of location of metastatic mass centre. Results. The median number of brain metastases was three, with lung cancer being the most common type of primary tumour; 36% had single metastasis. Almost 8% of patients had metastasis within hippocampus (1.1% of all metastases) and 18.1% of patients within HAZ (3.3% of all metastases). No statistically significant difference was observed in the laterality of hippocampal involvement, also when the location of centre of metastases was analyzed. There were more patients presenting the centre of metastasis within left (15) versus right (6) HAZ approaching the borderline of statistical significance. Conclusion. No significant difference in the laterality of BM seeding within hippocampal structures was observed. The hypothesized unilateral sparing WBRT would have theoretical advantage in about 50% reduction in the risk of subsequent recurrence within spared regions
11C-methionine in the diagnostics and management of glioblastoma patients with rapid early progression: nonrandomized, open label, prospective clinical trial (GlioMET)
Abstract Background Glioblastoma (GBM) is the most common and aggressive primary brain cancer. The treatment of GBM consists of a combination of surgery and subsequent oncological therapy, i.e., radiotherapy, chemotherapy, or their combination. If postoperative oncological therapy involves irradiation, magnetic resonance imaging (MRI) is used for radiotherapy treatment planning. Unfortunately, in some cases, a very early worsening (progression) or return (recurrence) of the disease is observed several weeks after the surgery and is called rapid early progression (REP). Radiotherapy planning is currently based on MRI for target volumes definitions in many radiotherapy facilities. However, patients with REP may benefit from targeting radiotherapy with other imaging modalities. The purpose of the presented clinical trial is to evaluate the utility of 11C-methionine in optimizing radiotherapy for glioblastoma patients with REP. Methods This study is a nonrandomized, open-label, parallel-setting, prospective, monocentric clinical trial. The main aim of this study was to refine the diagnosis in patients with GBM with REP and to optimize subsequent radiotherapy planning. Glioblastoma patients who develop REP within approximately 6 weeks after surgery will undergo 11C-methionine positron emission tomography (PET/CT) examinations. Target volumes for radiotherapy are defined using both standard planning T1-weighted contrast-enhanced MRI and PET/CT. The primary outcome is progression-free survival defined using RANO criteria and compared to a historical cohort with REP treated without PET/CT optimization of radiotherapy. Discussion PET is one of the most modern methods of molecular imaging. 11C-Methionine is an example of a radiolabelled (carbon 11) amino acid commonly used in the diagnosis of brain tumors and in the evaluation of response to treatment. Optimized radiotherapy may also have the potential to cover those regions with a high risk of subsequent progression, which would not be identified using standard-of-care MRI for radiotherapy planning. This is one of the first study focused on radiotherapy optimization for subgroup of patinets with REP. Trial Registration NCT05608395, registered on 8.11.2022 in clinicaltrials.gov; EudraCT Number: 2020–000640-64, registered on 26.5.2020 in clinicaltrialsregister.eu. Protocol ID: MOU-2020–01, version 3.2, date 18.09.2020