131 research outputs found
Analytic Perturbation Theory: A New Approach to the Analytic Continuation of the Strong Coupling Constant into the Timelike Region
The renormalization group applied to perturbation theory is ordinarily used
to define the running coupling constant in the spacelike region. However, to
describe processes with timelike momenta transfers, it is important to have a
self-consistent determination of the running coupling constant in the timelike
region. The technique called analytic perturbation theory (APT) allows a
consistent determination of this running coupling constant. The results are
found to disagree significantly with those obtained in the standard
perturbative approach. Comparison between the standard approach and APT is
carried out to two loops, and threshold matching in APT is applied in the
timelike region.Comment: 16 pages, REVTeX, 7 postscript figure
New analytic running coupling in QCD: higher loop levels
The properties of the new analytic running coupling are investigated at the
higher loop levels. The expression for this invariant charge, independent of
the normalization point, is obtained by invoking the asymptotic freedom
condition. It is shown that at any loop level the relevant function has
the universal behaviors at small and large values of the invariant charge. Due
to this feature the new analytic running coupling possesses the universal
asymptotics both in the ultraviolet and infrared regions irrespective of the
loop level. The consistency of the model considered with the general definition
of the QCD invariant charge is shown.Comment: LaTeX 2.09, 12 pages with 5 EPS figures, uses mpla1.sty; enlarged
version is accepted for publication in Mod. Phys. Lett.
Quantum Interaction : the Construction of Quantum Field defined as a Bilinear Form
We construct the solution of the quantum wave equation
as a bilinear form which can
be expanded over Wick polynomials of the free -field, and where
is defined as the normal ordered product with
respect to the free -field. The constructed solution is correctly defined
as a bilinear form on , where is a
dense linear subspace in the Fock space of the free -field. On
the diagonal Wick symbol of this bilinear form
satisfies the nonlinear classical wave equation.Comment: 32 pages, LaTe
Bulk Scalar Stabilization of the Radion without Metric Back-Reaction in the Randall-Sundrum Model
Generalizations of the Randall-Sundrum model containing a bulk scalar field
interacting with the curvature through the general coupling are considered. We derive the general form of the effective 4D
potential for the spin-zero fields and show that in the mass matrix the radion
mixes with the Kaluza-Klein modes of the bulk scalar fluctuations. We
demonstrate that it is possible to choose a non-trivial background form
(where is the extra dimension coordinate) for the bulk scalar
field such that the exact Randall-Sundrum metric is preserved (i.e. such that
there is no back-reaction). We compute the mass matrix for the radion and the
KK modes of the excitations of the bulk scalar relative to the background
configuration and find that the resulting mass matrix implies a
non-zero value for the mass of the radion (identified as the state with the
lowest eigenvalue of the scalar mass matrix). We find that this mass is
suppressed relative to the Planck scale by the standard warp factor needed to
explain the hierarchy puzzle, implying that a mass \sim 1\tev is a natural
order of magnitude for the radion mass. The general considerations are
illustrated in the case of a model containing an interaction term.Comment: 22 pages, 3 figure
Improved Conformal Mapping of the Borel Plane
The conformal mapping of the Borel plane can be utilized for the analytic
continuation of the Borel transform to the entire positive real semi-axis and
is thus helpful in the resummation of divergent perturbation series in quantum
field theory. We observe that the rate of convergence can be improved by the
application of Pad\'{e} approximants to the Borel transform expressed as a
function of the conformal variable, i.e. by a combination of the analytic
continuation via conformal mapping and a subsequent numerical approximation by
rational approximants. The method is primarily useful in those cases where the
leading (but not sub-leading) large-order asymptotics of the perturbative
coefficients are known.Comment: 6 pages, LaTeX, 2 tables; certain numerical examples adde
On the role of power expansions in quantum field theory
Methods of summation of power series relevant to applications in quantum
theory are reviewed, with particular attention to expansions in powers of the
coupling constant and in inverse powers of an energy variable. Alternatives to
the Borel summation method are considered and their relevance to different
physical situations is discussed. Emphasis is placed on quantum chromodynamics.
Applications of the renormalon language to perturbation expansions (resummation
of bubble chains) in various QCD processes are reported and the importance of
observing the full renormalization-group invariance in predicting observables
is emphasized. News in applications of the Borel-plane formalism to
phenomenology are conveyed. The properties of the operator-product expansion
along different rays in the complex plane are examined and the problem is
studied how the remainder after subtraction of the first terms depends on
the distance from euclidean region. Estimates of the remainder are obtained and
their strong dependence on the nature of the discontinuity along the cut is
shown. Relevance of this subject to calculations of various QCD effects is
discussed.Comment: 50 pages, Latex, 1 Postscript figur
Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition
We present experimental results at intensities relevant to Shock Ignition
obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves
produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at
1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and
a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets
composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics)
and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl
to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and
spectral properties of the fast electrons and a streak camera for shock breakout measurements.
Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and
Two Plasmon Decay) were studied by collecting the back scattered light and analysing its
spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum
pressure reached in our experiment we performed hydro simulations with CHIC and DUED
codes. The maximum shock pressure generated in our experiment at the front side of the
target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was
estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio
Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing
A simple model of the neutrino mixing is considered, which contains only one
right-handed neutrino field, coupled via the mass term to the three usual
left-handed fields. This is a simplest model that allows for three-flavour
neutrino oscillations. The existing experimental limits on the neutrino
oscillations are used to obtain constraints on the two free mixing parameters
of the model. A specific sum rule relating the oscillation probabilities of
different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9
Tall tales from de Sitter space II: Field theory dualities
We consider the evolution of massive scalar fields in (asymptotically) de
Sitter spacetimes of arbitrary dimension. Through the proposed dS/CFT
correspondence, our analysis points to the existence of new nonlocal dualities
for the Euclidean conformal field theory. A massless conformally coupled scalar
field provides an example where the analysis is easily explicitly extended to
'tall' background spacetimes.Comment: 31 pages, 2 figure
- …