5,693 research outputs found

    3D integrated superconducting qubits

    Get PDF
    As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1T_1, T2,echo>20 ΌT_{2,\rm{echo}} > 20\,\mus) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips

    Action and Hamiltonian for eternal black holes

    Full text link
    We present the Hamiltonian, quasilocal energy, and angular momentum for a spacetime region spatially bounded by two timelike surfaces. The results are applied to the particular case of a spacetime representing an eternal black hole. It is shown that in the case when the boundaries are located in two different wedges of the Kruskal diagram, the Hamiltonian is of the form H=H+−H−H = H_+ - H_-, where H+H_+ and H−H_- are the Hamiltonian functions for the right and left wedges respectively. The application of the obtained results to the thermofield dynamics description of quantum effects in black holes is briefly discussed.Comment: 24 pages, Revtex, 5 figures (available upon request

    Using XDAQ in Application Scenarios of the CMS Experiment

    Full text link
    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics, La Jolla, CA

    Coherent State path-integral simulation of many particle systems

    Full text link
    The coherent state path integral formulation of certain many particle systems allows for their non perturbative study by the techniques of lattice field theory. In this paper we exploit this strategy by simulating the explicit example of the diffusion controlled reaction A+A→0A+A\to 0. Our results are consistent with some renormalization group-based predictions thus clarifying the continuum limit of the action of the problem.Comment: 20 pages, 4 figures. Minor corrections. Acknowledgement and reference correcte

    Non-equilibrium stationary state of a two-temperature spin chain

    Full text link
    A kinetic one-dimensional Ising model is coupled to two heat baths, such that spins at even (odd) lattice sites experience a temperature TeT_{e} (% T_{o}). Spin flips occur with Glauber-type rates generalised to the case of two temperatures. Driven by the temperature differential, the spin chain settles into a non-equilibrium steady state which corresponds to the stationary solution of a master equation. We construct a perturbation expansion of this master equation in terms of the temperature difference and compute explicitly the first two corrections to the equilibrium Boltzmann distribution. The key result is the emergence of additional spin operators in the steady state, increasing in spatial range and order of spin products. We comment on the violation of detailed balance and entropy production in the steady state.Comment: 11 pages, 1 figure, Revte

    The CMS Event Builder

    Full text link
    The data acquisition system of the CMS experiment at the Large Hadron Collider will employ an event builder which will combine data from about 500 data sources into full events at an aggregate throughput of 100 GByte/s. Several architectures and switch technologies have been evaluated for the DAQ Technical Design Report by measurements with test benches and by simulation. This paper describes studies of an EVB test-bench based on 64 PCs acting as data sources and data consumers and employing both Gigabit Ethernet and Myrinet technologies as the interconnect. In the case of Ethernet, protocols based on Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies, including measurements on throughput and scaling are presented. The architecture of the baseline CMS event builder will be outlined. The event builder is organised into two stages with intelligent buffers in between. The first stage contains 64 switches performing a first level of data concentration by building super-fragments from fragments of 8 data sources. The second stage combines the 64 super-fragments into full events. This architecture allows installation of the second stage of the event builder in steps, with the overall throughput scaling linearly with the number of switches in the second stage. Possible implementations of the components of the event builder are discussed and the expected performance of the full event builder is outlined.Comment: Conference CHEP0

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq∝1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq∝1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' tweff≄twt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift T→Tâ€ČT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,Tâ€Č)≄b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq∝1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    Crossover from Rate-Equation to Diffusion-Controlled Kinetics in Two-Particle Coagulation

    Full text link
    We develop an analytical diffusion-equation-type approximation scheme for the one-dimensional coagulation reaction A+A->A with partial reaction probability on particle encounters which are otherwise hard-core. The new approximation describes the crossover from the mean-field rate-equation behavior at short times to the universal, fluctuation-dominated behavior at large times. The approximation becomes quantitatively accurate when the system is initially close to the continuum behavior, i.e., for small initial density and fast reaction. For large initial density and slow reaction, lattice effects are nonnegligible for an extended initial time interval. In such cases our approximation provides the correct description of the initial mean-field as well as the asymptotic large-time, fluctuation-dominated behavior. However, the intermediate-time crossover between the two regimes is described only semiquantitatively.Comment: 21 pages, plain Te

    Alternating Kinetics of Annihilating Random Walks Near a Free Interface

    Full text link
    The kinetics of annihilating random walks in one dimension, with the half-line x>0 initially filled, is investigated. The survival probability of the nth particle from the interface exhibits power-law decay, S_n(t)~t^{-alpha_n}, with alpha_n approximately equal to 0.225 for n=1 and all odd values of n; for all n even, a faster decay with alpha_n approximately equal to 0.865 is observed. From consideration of the eventual survival probability in a finite cluster of particles, the rigorous bound alpha_1<1/4 is derived, while a heuristic argument gives alpha_1 approximately equal to 3 sqrt{3}/8 = 0.2067.... Numerically, this latter value appears to be a stringent lower bound for alpha_1. The average position of the first particle moves to the right approximately as 1.7 t^{1/2}, with a relatively sharp and asymmetric probability distribution.Comment: 6 pages, RevTeX, 5 eps figures include

    Heuristic derivation of continuum kinetic equations from microscopic dynamics

    Full text link
    We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field type, decoupled approximation of the master equation followed by the `naive' continuum limit. The Ising model and driven diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and when microscopic inputs in the continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include
    • 

    corecore