A kinetic one-dimensional Ising model is coupled to two heat baths, such that
spins at even (odd) lattice sites experience a temperature Te ().
Spin flips occur with Glauber-type rates generalised to the case of two
temperatures. Driven by the temperature differential, the spin chain settles
into a non-equilibrium steady state which corresponds to the stationary
solution of a master equation. We construct a perturbation expansion of this
master equation in terms of the temperature difference and compute explicitly
the first two corrections to the equilibrium Boltzmann distribution. The key
result is the emergence of additional spin operators in the steady state,
increasing in spatial range and order of spin products. We comment on the
violation of detailed balance and entropy production in the steady state.Comment: 11 pages, 1 figure, Revte