7,806 research outputs found

    Hairy Black Holes, Horizon Mass and Solitons

    Get PDF
    Properties of the horizon mass of hairy black holes are discussed with emphasis on certain subtle and initially unexpected features. A key property suggests that hairy black holes may be regarded as `bound states' of ordinary black holes without hair and colored solitons. This model is then used to predict the qualitative behavior of the horizon properties of hairy black holes, to provide a physical `explanation' of their instability and to put qualitative constraints on the end point configurations that result from this instability. The available numerical calculations support these predictions. Furthermore, the physical arguments are robust and should be applicable also in more complicated situations where detailed numerical work is yet to be carried out.Comment: 25 pages, 5 (new) figures. Revtex file. Final version to appear in CQ

    Mechanics of multidimensional isolated horizons

    Full text link
    Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements and a section about the gauge invariance of introduced quantities added; typos corrected, footnote 4 on page 9 adde

    Maxwell Fields in Spacetimes Admitting Non-Null Killing Vectors

    Get PDF
    We consider source-free electromagnetic fields in spacetimes possessing a non-null Killing vector field, ξa\xi^a. We assume further that the electromagnetic field tensor, FabF_{ab}, is invariant under the action of the isometry group induced by ξa\xi^a. It is proved that whenever the two potentials associated with the electromagnetic field are functionally independent the entire content of Maxwell's equations is equivalent to the relation \n^aT_{ab}=0. Since this relation is implied by Einstein's equation we argue that it is enough to solve merely Einstein's equation for these electrovac spacetimes because the relevant equations of motion will be satisfied automatically. It is also shown that for the exceptional case of functionally related potentials \n^aT_{ab}=0 implies along with one of the relevant equations of motion that the complementary equation concerning the electromagnetic field is satisfied.Comment: 7 pages,PACS numbers: 04.20.Cv, 04.20.Me, 04.40.+

    Quasi-local rotating black holes in higher dimension: geometry

    Full text link
    With a help of a generalized Raychaudhuri equation non-expanding null surfaces are studied in arbitrarily dimensional case. The definition and basic properties of non-expanding and isolated horizons known in the literature in the 4 and 3 dimensional cases are generalized. A local description of horizon's geometry is provided. The Zeroth Law of black hole thermodynamics is derived. The constraints have a similar structure to that of the 4 dimensional spacetime case. The geometry of a vacuum isolated horizon is determined by the induced metric and the rotation 1-form potential, local generalizations of the area and the angular momentum typically used in the stationary black hole solutions case.Comment: 32 pages, RevTex

    Spacetimes foliated by Killing horizons

    Full text link
    It seems to be expected, that a horizon of a quasi-local type, like a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighborhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometry of the transversal Killing horizon coincides with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection.Comment: LaTeX 2e, 13 page
    corecore