45 research outputs found
Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy
Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure
Overactive bladder – 18 years – Part II
ABSTRACT Traditionally, the treatment of overactive bladder syndrome has been based on the use of oral medications with the purpose of reestablishing the detrusor stability. The recent better understanding of the urothelial physiology fostered conceptual changes, and the oral anticholinergics – pillars of the overactive bladder pharmacotherapy – started to be not only recognized for their properties of inhibiting the detrusor contractile activity, but also their action on the bladder afference, and therefore, on the reduction of the symptoms that constitute the syndrome. Beta-adrenergic agonists, which were recently added to the list of drugs for the treatment of overactive bladder, still wait for a definitive positioning – as either a second-line therapy or an adjuvant to oral anticholinergics. Conservative treatment failure, whether due to unsatisfactory results or the presence of adverse side effects, define it as refractory overactive bladder. In this context, the intravesical injection of botulinum toxin type A emerged as an effective option for the existing gap between the primary measures and more complex procedures such as bladder augmentation. Sacral neuromodulation, described three decades ago, had its indication reinforced in this overactive bladder era. Likewise, the electric stimulation of the tibial nerve is now a minimally invasive alternative to treat those with refractory overactive bladder. The results of the systematic literature review on the oral pharmacological treatment and the treatment of refractory overactive bladder gave rise to this second part of the review article Overactive Bladder – 18 years, prepared during the 1st Latin-American Consultation on Overactive Bladder
Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis
Wilms\u27 tumor 1 (Wt1) is a tumor suppressor gene encoding ~24 zinc-finger transcription factors. In the mammalian testis, Wt1 is mostly expressed by Sertoli cells (SCs), involving in testis development, spermatogenesis and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1^-/flox; Amh-Cre mice that specifically deleted Wt1 in the SCs versus age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes which remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6 and Hsd17b3, but high expression of FLC-associated genes Thbs2 and Hsd3b1. While serum LH and testosterone level in mutant mice was not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1 and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by co-culturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs which remain mitotically active in adult mice, illustrating Wt1 dictates the fate of FLC and ALC during postnatal testis development