118 research outputs found

    Th1 versus Th17: Are T cell cytokines relevant in multiple sclerosis?

    Get PDF
    AbstractOur understanding of the pathophysiology of multiple sclerosis (MS) has evolved significantly over the past two decades as the fields of immunology and neurobiology provide new avenues of exploration into the cause and mechanism of the disease. It has been known for decades that T cells have different cytokine phenotypes, yet the cytokine phenotype of pathogenic T cells in MS is still an area of debate. In EAE, it appears that IFNγ and IL-17, produced by Th1 and Th17 cells respectively, are not the critical factor that determines T cell encephalitogenicity. However, there are molecules such as IL-23, T-bet and STAT4, that appear to be critical, yet it is unclear whether all these molecules contribute to a common, yet undefined pathway, or act in a synergistic manner which culminates in encephalitogenicity has still to be determined. Therefore, the focus of research on effector T cells in MS should focus on pathways upstream of the cytokines that define Th1 and Th17 cells, since downstream products, such as IFNγ and IL-17, probably are not critical determinants of whether an effector T cells is capable of trafficking to the CNS and inducing inflammatory demyelination

    PPARs in Neuroinflammation

    Get PDF

    PPAR Alpha Regulation of the Immune Response and Autoimmune Encephalomyelitis

    Get PDF
    PPARs are members of the steroid hormone nuclear receptor superfamily and play an important role in the regulation of lipid metabolism, energy balance, artherosclerosis and glucose control. Recent studies suggest that they play an important role in regulating inflammation. This review will focus on PPAR-α regulation of the immune response. We describe how PPAR-α regulates differentiation of T cells by transactivation and/or interaction with other transcription factors. Moreover, PPAR-α agonists have been shown to ameliorate experimental autoimmune encephalomyelitis (EAE) in mice, suggesting that they could provide a therapy for human autoimmune diseases such as multiple sclerosis

    Regulation of Immune Responses and Autoimmune Encephalomyelitis by PPARs

    Get PDF
    PPARs are members of the steroid hormone nuclear receptor superfamily and play an important role in regulating inflammation as well as lipid metabolism. The PPAR subfamily has been defined as PPARα, PPARβ/δ, and PPARγ, each with different ligands, target genes, and biological roles. PPARs regulate the expression of target inflammatory genes through mechanisms involving both transactivation and transrepression. The anti-inflammatory properties of PPAR agonists have led to the investigation of PPAR functions in regulating autoimmune encephalomyelitis. This paper will summarize some of the general mechanisms by which PPARs regulate inflammatory gene expression and focus on the recent advances of PPAR regulation of autoimmune encephalomyelitis

    Multiple Sclerosis Followed by Neuromyelitis Optica Spectrum Disorder: From the National Multiple Sclerosis Society Case Conference Proceedings

    Get PDF
    A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder

    Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    Get PDF
    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation

    Clinical utility of plasma Aβ42/40 ratio by LC-MS/MS in Alzheimer’s disease assessment

    Get PDF
    IntroductionPlasma Aβ42/40 ratio can help predict amyloid PET status, but its clinical utility in Alzheimer’s disease (AD) assessment is unclear.MethodsAβ42/40 ratio was measured by LC-MS/MS for 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and for 6,192 consecutive clinical specimens submitted for Aβ42/40 testing.ResultsHigh diagnostic sensitivity and negative predictive value (NPV) for Aβ-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aβ42/40 values for individuals with positive vs. negative Aβ-PET results. Assuming a moderate prevalence of Aβ-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients’ cognitive impairment and help reduce PET evaluation by about 40%.ConclusionHigh-throughput plasma Aβ42/40 LC-MS/MS assays can help identify patients with low likelihood of AD pathology, which can reduce PET evaluations, allowing for cost savings

    PEG Minocycline-Liposomes Ameliorate CNS Autoimmune Disease

    Get PDF
    Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS). Minocycline, a potent inhibitor of matrix metalloproteinase (MMP)-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG) minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs), we determined that PEG minocycline-liposome preparations stabilized with CaCl(2) are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS

    Macrophage-Specific Chemokines Induced via Innate Immunity by Amino Acid Copolymers and Their Role in EAE

    Get PDF
    The random amino acid copolymer poly(Y,E,A,K)n (Copaxone®) is widely used in multiple sclerosis treatment and a second generation copolymer poly(Y,F,A,K)n with enhanced efficacy in experimental autoimmune encephalomyelitis in mice has been described. A major mechanism through which copolymers function to ameliorate disease is the generation of immunosuppressive IL-10-secreting regulatory T cells entering the CNS. In addition, the antigen presenting cell to which these copolymers bind through MHC Class II proteins may have an important role. Here, both CCL22 (a Th2 cell chemoattractant) in large amounts and CXCL13 in much smaller amounts are shown to be secreted after administration of YFAK to mice and to a smaller extent by YEAK parallel to their serum concentrations. Moreover, bone marrow-derived macrophages secrete CCL22 in vitro in response to YFAK and to higher concentrations of YEAK. Strikingly, these chemokines are also secreted into serum of MHC Class II −/− mice, indicating that an innate immune receptor on these cells also has an important role. Thus, both the innate and the adaptive immune systems are involved in the mechanism of EAE amelioration by YFAK. The enhanced ability of YFAK to stimulate the innate immune system may account for its enhanced efficacy in EAE treatment

    Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    Get PDF
    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy
    corecore