701 research outputs found

    Adducts of functionalized Graphene layers with Ag nanoparticles for Antimicrobial applications

    Get PDF
    Health and environmental impacts of multi-drug resistance (MDR) pathogens are becoming more and more relevant nowadays, thus increasing the need of developing new, safe and effective antimicrobials. This research was focused on the synthesis, the characterization and the evaluation of the antimicrobial and cytotoxic activity of hybrid nanomaterials made up through a simple and sustainable functionalization of three carbon substrates, namely Graphite, Carbon black and Carbon nanotubes, with a pyrrole moiety (SP) and silver nanoparticles (Ag-NP) [1, 2]. The adducts were analyzed by means of thermogravimetric analyses (TGA), transmission electron microscopy (HRTEM) and X-ray diffraction analyses (WAXD), which confirmed the successful functionalization of raw materials. UV-vis spectroscopy and dynamic/electrophoretic light scattering (DLS/ELS) provided information regarding carbon suspensions stability, particles sizes and surface charge. Results from microbiological tests revealed an outstanding enhancement of the antimicrobial activity promoted by the functionalization with Ag nanoparticles, maintaining unaltered the cytotoxic levels exerted by not-functionalized materials. In the light of these results, a possible bactericidal mechanism based on the synergy between mechanical and oxidative stresses at the bacterial membrane level is proposed

    Decolonising the school experience through poetry to foreground truth-telling and cognitive justice

    Get PDF
    While attempts to decolonise the school curriculum have been ongoing since the 1970s, the recent Black Lives Matter protests around the world have drawn urgent attention to the vast inequities faced by Black and First Nations peoples and people of colour. Decolonising education and other public institutions has become a front-line public concern around the world. In this article, we argue that poetry offers generative possibilities for the decolonisation of Australian high school (and university) curricula. Inspired by Aboriginal and Torres Strait Islander approaches to knowledge creation as intergenerational, iterative and intercultural, and by postcolonial and decolonial theories, we explore ways in which poetry events can begin decolonising and diversifying the school curriculum. We suggest that poetry creates spaces for deep listening with the heart (dadirri) that can promote truth-telling about colonial histories and the strengths, achievements and contributions of First Nations Australians. These decolonising efforts underpin the Wandiny (Gathering Together) – Listen With the Heart: Uniting Nations Through Poetry research that we discuss in this article. In these ways, we argue that decolonised curricula create the conditions for cognitive justice in schooling that is an important precursor to other forms of social justice, such as equality, diversity and inclusion

    Expansion of the Gene Ontology knowledgebase and resources

    Get PDF
    The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/

    Immune-checkpoint inhibitors from cancer to COVID‑19: A promising avenue for the treatment of patients with COVID‑19

    Get PDF
    The severe acute respiratory syndrome associated coronavirus‑2 (SARS‑CoV‑2) poses a threat to human life worldwide. Since early March, 2020, coronavirus disease 2019 (COVID‑19), characterized by an acute and often severe form of pneumonia, has been declared a pandemic. This has led to a boom in biomedical research studies at all stages of the pipeline, from the in vitro to the clinical phase. In line with this global effort, known drugs, currently used for the treatment of other pathologies, including antivirals, immunomodulating compounds and antibodies, are currently used off‑label for the treatment of COVID‑19, in association with the supportive standard care. Yet, no effective treatments have been identified. A new hope stems from medical oncology and relies on the use of immune‑checkpoint inhibitors (ICIs). In particular, amongst the ICIs, antibodies able to block the programmed death‑1 (PD‑1)/PD ligand-1 (PD‑L1) pathway have revealed a hidden potential. In fact, patients with severe and critical COVID‑19, even prior to the appearance of acute respiratory distress syndrome, exhibit lymphocytopenia and suffer from T‑cell exhaustion, which may lead to viral sepsis and an increased mortality rate. It has been observed that cancer patients, who usually are immunocompromised, may restore their anti‑tumoral immune response when treated with ICIs. Moreover, viral-infected mice and humans, exhibit a T‑cell exhaustion, which is also observed following SARS‑CoV‑2 infection. Importantly, when treated with anti‑PD‑1 and anti‑PD‑L1 antibodies, they restore their T‑cell competence and efficiently counteract the viral infection. Based on these observations, four clinical trials are currently open, to examine the efficacy of anti‑PD‑1 antibody administration to both cancer and non‑cancer individuals affected by COVID‑19. The results may prove the hypothesis that restoring exhausted T‑cells may be a winning strategy to beat SARS‑CoV‑2 infection

    Treatment of atrial fibrillation with a dual defibrillator in heart failure patients (TRADE HF): protocol for a randomized clinical trial.

    Get PDF
    Background: Heart failure(HF) and atrial fibrillation(AF) frequently coexist in the same patient and are associated with increased mortality and frequent hospitalizations. As the concomitance of AF and HF is often associated with a poor prognosis, the prompt treatment of AF in HF patients may significantly improve outcome.Methods/design: Recent implantable cardiac resynchronization (CRT) devices allow electrical therapies to treat AF automatically. TRADE-HF (trial registration: NCT00345592; http://www.clinicaltrials.gov) is a prospective, randomized, double arm study aimed at demonstrating the efficacy of an automatic, device-based therapy for treatment of atrial tachycardia and fibrillation(AT/AF) in patients indicated for CRT. The study compares automatic electrical therapy to a traditional more usual treatment of AT/AF: the goal is to demonstrate a reduction in a combined endpoint of unplanned hospitalizations for cardiac reasons, death from cardiovascular causes or permanent AF when using automatic atrial therapy as compared to the traditional approach involving hospitalization for symptoms and in-hospital treatment of AT/AF.Discussion: CRT pacemaker with the additional ability to convert AF as well as ventricular arrhythmias may play a simultaneous role in rhythm control and HF treatment. The value of the systematic implantation of CRT ICDs with the capacity to deliver atrial therapy in HF patients at risk of AF has not yet been explored. The TRADE-HF study will assess in CRT patients whether a strategy based on automatic management of atrial arrhythmias might be a valuable option to reduce the number of hospital admission and to reduce the progression the arrhythmia to a permanent for

    Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    Get PDF
    The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites.The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition.The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a "free jet" (open channel) configuration. The velocity field in the wake of the rotor was also fully characterized by means of an instrumented traversing system, to investigate the flow distribution downstream of the test section.Special care is taken in the description of the experimental set-up and of the measured data, so that the present results can be used as a benchmark for the validation of simulation models

    New detectors for the kaon and hypernuclear experiments with KaoS at MAMI and with PANDA at GSI

    Get PDF
    The KaoS spectrometer at the Mainz Microtron MAMI, Germany, is perceived as the ideal candidate for a dedicated spectrometer in kaon and hypernuclei electroproduction. KaoS will be equipped with new read-out electronics, a completely new focal plane detector package consisting of scintillating fibres, and a new trigger system. First prototypes of the fibre detectors and the associated new front-end electronics are shown in this contribution. The Mainz hypernuclei research program will complement the hypernuclear experiments at the planned FAIR facility at GSI, Germany. At the proposed antiproton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the PANDA Collaboration. The experiments require the operation of high purity germanium (HPGe) detectors in high magnetic fields (B= 1T) in the presence of a large hadronic background. The performance of high resolution Ge detectors in such an environment has been investigated.Comment: Presentation at International Symposium on the Development of Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, Stanford, Ca (SNIC06), 6 pages, LaTeX, 11 eps figure

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    The Gene Ontology Resource: 20 years and still GOing strong

    Get PDF
    The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page

    Performance of HPGe Detectors in High Magnetic Fields

    Full text link
    A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN magnet at GSI. No significant degradation of the energy resolution was found, and a change in the rise time distribution of the pulses from preamplifiers was observed. A correlation between rise time and pulse height was observed and is used to correct the measured energy, recovering the energy resolution almost completely. Moreover, no problems in the electronics due to the magnetic field were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9 figure
    corecore