2 research outputs found

    Promiscuous 8‑Alkoxyadenosines in the Guide Strand of an SiRNA: Modulation of Silencing Efficacy and Off-Pathway Protein Binding

    No full text
    8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as “base switches” in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions: two in the seed region, one at the cleavage junction, and another nearer to the 3′-end of the guide strand. Thermal stabilities of the corresponding siRNA duplexes showed that U is preferred over G as the base-pairing partner in the complementary strand. When compared to the unmodified positive control siRNAs, singly modified siRNAs knocked down the target mRNA efficiently and with little or no loss of efficacy. Doubly modified siRNAs were found to be less effective and lose their efficacy at low nanomolar concentrations. SiRNAs singly modified at positions 6 and 10 of the guide strand were found to be effective in blocking binding to the RNA-dependent protein kinase PKR, a cytoplasmic dsRNA-binding protein implicated in sequence-independent off-target effects

    Structure-Guided Control of siRNA Off-Target Effects

    No full text
    Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2’s central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2–siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC<sub>50</sub>) by the modification, while on-target knockdown was improved (2-fold reduction in IC<sub>50</sub>). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale
    corecore