28 research outputs found

    Cerebellum and neurodevelopmental disorders: RORα is a unifying force

    Get PDF
    Errors of cerebellar development are increasingly acknowledged as risk factors for neuro-developmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia. Evidence has been assembled from cerebellar abnormalities in autistic patients, as well as a range of genetic mutations identified in human patients that affect the cerebellar circuit, particularly Purkinje cells, and are associated with deficits of motor function, learning and social behavior; traits that are commonly associated with autism and schizophrenia. However, NDDs, such as ASD and schizophrenia, also include systemic abnormalities, e.g., chronic inflammation, abnormal circadian rhythms etc., which cannot be explained by lesions that only affect the cerebellum. Here we bring together phenotypic, circuit and structural evidence supporting the contribution of cerebellar dysfunction in NDDs and propose that the transcription factor Retinoid-related Orphan Receptor alpha (RORα) provides the missing link underlying both cerebellar and systemic abnormalities observed in NDDs. We present the role of RORα in cerebellar development and how the abnormalities that occur due to RORα deficiency could explain NDD symptoms. We then focus on how RORα is linked to NDDs, particularly ASD and schizophrenia, and how its diverse extra-cerebral actions can explain the systemic components of these diseases. Finally, we discuss how RORα-deficiency is likely a driving force for NDDs through its induction of cerebellar developmental defects, which in turn affect downstream targets, and its regulation of extracerebral systems, such as inflammation, circadian rhythms, and sexual dimorphism

    Reinnervation of late postnatal purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation.

    No full text
    Synaptic partner selection and refinement of projections are important in the development of precise and functional neuronal connections. We investigated the formation of new synaptic connections in a relatively mature system to test whether developmental events can be recapitulated at later stages (i.e., after the mature synaptic organization has been established), using a model of postlesional reinnervation in the olivo-cerebellar pathway. During the development of this pathway, synaptic connections between climbing fibers (CFs) and Purkinje cells (PCs) are diffuse and redundant before synapse elimination refines the pattern. The regression of CFs during the first 2 postnatal weeks in the rat leads to mono-innervation of each PC. After unilateral transection of the rat olivo-cerebellar pathway and intracerebellar injection of BDNF 24 h after lesion, axons from the remaining inferior olive can sprout into the deafferented hemicerebellum and establish new contacts with denervated PCs at later developmental stages. We found that these contacts are first established on somatic thorns before the CFs translocate to the PC dendrites, recapitulating the morphological steps of normal CF-PC synaptogenesis, but on a relatively mature PC. However, electrophysiology of PC reinnervation by transcommissural CFs in these animals showed that each PC is reinnervated by only one CF. This mono-innervation contrasts with the reinnervation of grafted immature PCs in the same cerebellum. Our results provide evidence that relatively mature PCs do not receive several olivary afferents during late reinnervation, suggesting a critical role of the target cell state in the control of CF-PC synaptogenesis. Thus, synapse exuberance and subsequent elimination are not a prerequisite to reach a mature relationship between synaptic partners

    Age-related Purkinje cell death is steroid dependent: RORα haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival

    Get PDF
    A major problem of ageing is progressive impairment of neuronal function and ultimately cell death. Since sex steroids are neuroprotective, their decrease with age may underlie age-related neuronal degeneration. To test this, we examined Purkinje cell numbers, plasma sex steroids and cerebellar neurosteroid concentrations during normal ageing (wild-type mice, WT), in our model of precocious ageing (Rora+/sg, heterozygous staggerer mice in which expression of the neuroprotective factor RORα is disrupted) and after long-term hormone insufficiency (WT post-gonadectomy). During normal ageing (WT), circulating sex steroids declined prior to or in parallel with Purkinje cell loss, which began at 18 months of age. Although Purkinje cell death was advanced in WT long-term steroid deficiency, this premature neuronal loss did not begin until 9 months, indicating that vulnerability to sex steroid deficiency is a phenomenon of ageing Purkinje neurons. In precocious ageing (Rora+/sg), circulating sex steroids decreased prematurely, in conjunction with marked Purkinje cell death from 9 months. Although Rora+/sg Purkinje cells are vulnerable through their RORα haplo-insufficiency, it is only as they age (after 9 months) that sex steroid failure becomes critical. Finally, cerebellar neurosteroids did not decrease with age in either genotype or gender; but were profoundly reduced by 3 months in male Rora+/sg cerebella, which may contribute to the fragility of their Purkinje neurons. These data suggest that ageing Purkinje cells are maintained by circulating sex steroids, rather than local neurosteroids, and that in Rora+/sg their age-related death is advanced by premature sex steroid loss induced by RORα haplo-insufficiency

    Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species

    Get PDF
    Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS

    IGF-I induces neonatal climbing-fibre plasticity in the mature rat cerebellum

    No full text
    Following unilateral transection (pedunculotomy) of the neonatal rat olivocerebellar pathway, the remaining inferior olive reinnervates the denervated hemicerebellum with correct topography. The critical period for this transcommissural reinnervation closes between postnatal days 7 and 10 but can be extended by injection of growth factors. Whether growth factor treatment can extend developmental plasticity into a mature, myelinated milieu remains unknown. Rats aged 11-30 days, underwent unilateral pedunculotomy followed 24 h later by injection of insulin-like growth factor 1 (IGF-1) into the denervated cerebellum. In all animals, IGF-1 induced transcommissural olivocerebellar reinnervation, which displayed organisation consistent with normal olivocerebellar topography even following pedunculotomy up to day 20. Thus IGF-1 can reproduce developmental neuroplasticity to promote appropriate target reinnervation in a mature myelinated environment

    Role of afferents in the development and cell survival of the vertebrate nervous system

    No full text
    1. During normal development of the vertebrate central nervous system, a considerable number of neurons die. The factors controlling which neurons die and which survive are not fully understood. 2. Target populations are known to maintain their innervating neurons. However, the role of afferents in maintaining their targets is still under review, 3. In the developing nervous system, deafferentation of a neuron population is difficult to achieve because plasticity (structural re-organization) can cause re-innervation of the area. Re-innervation alters, rather than removes, the efferent supply. 4. Afferent input is important for neuronal survival during development because deafferentation increases neuronal death by 20-30% and increasing input diminishes neuronal death. 5. Deafferented neurons die at the normal time for cell death for any given population. This occurs after the arrival of afferent axons but before the completion of connectivity and the onset of function. 6. Neuronal survival is maintained by any input, such as reinnervation by inappropriate fibres, but for optimal survival, morphological maturation and the acquisition of normal physiology tile correct input is required. 7. Afferents maintain their target neurons via a combination of electrical activity and delivery of trophic agents, which adjust intracellular calcium, thereby facilitating protein synthesis, mitochondrial function and suppressing apoptosis. 8. Evidence from animal and in vitro experiments indicates that efferents play an extremely important role in the survival of developing neurons in the immature vertebrate nervous system

    Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibres on mature Purkinje cells

    No full text
    In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from the remaining inferior olive reinnervate the denervated hemicerebellum and develop climbing fiber arbors on Purkinje cells. However, the capacity to recreate this accurate target reinnervation in a mature system remains unknown. In rats lesioned on day 15 (P15) or 30 and treated with intracerebellar injection of brain-derived neurotrophic factor (BDNF) or vehicle 24 h later, the morphology and organisation of transcommissural olivocerebellar reinnervation was examined using neuronal tracing and immunohistochemistry. In all animals BDNF, but not vehicle, induced transcommissural olivocerebellar axonal growth into the denervated hemicerebellum. The distribution of reinnervating climbing fibers was not confined to the injection sites but extended throughout the denervated hemivermis and, less densely, up to 3.5 mm into the hemisphere. Transcommissural olivocerebellar axons were organised into parasagittal microzones that were almost symmetrical to those in the right hemicerebellum. Reinnervating climbing fiber arbors were predominantly normal, but in the P30-lesioned group 10% were either branched within the molecular layer forming a smaller secondary arbor or were less branched, and in the P15 lesion group the reinnervating arbors extended their terminals almost to the pial surface and were larger than control arbors (P < 0.02). These results show that BDNF can induce transcommissural olivocerebellar reinnervation, which resembles developmental neuroplasticity to promote appropriate target reinnervation in a mature environment

    IGF-I induces neonatal climbing-fibre plasticity in the mature rat cerebellum

    No full text
    Following unilateral transection (pedunculotomy) of the neonatal rat olivocerebellar pathway, the remaining inferior olive reinnervates the denervated hemicerebellum with correct topography. The critical period for this transcommissural reinnervation closes between postnatal days 7 and 10 but can be extended by injection of growth factors. Whether growth factor treatment can extend developmental plasticity into a mature, myelinated milieu remains unknown. Rats aged 11-30 days, underwent unilateral pedunculotomy followed 24 h later by injection of insulin-like growth factor 1 (IGF-1) into the denervated cerebellum. In all animals, IGF-1 induced transcommissural olivocerebellar reinnervation, which displayed organisation consistent with normal olivocerebellar topography even following pedunculotomy up to day 20. Thus IGF-1 can reproduce developmental neuroplasticity to promote appropriate target reinnervation in a mature myelinated environment

    Acute neuronal and vascular changes following unilateral cerebellar pedunculotomy in the neonatal rat

    No full text
    During development of the central nervous system (CNS) both deafferentation and axotomy induce increased neuronal death and result in a smaller brain with diminished function at maturity. Unilateral cerebellar pedunculotomy has been used as a model to study the relative importance of these 2 types of lesion on the survival of developing CNS neurons. Within the cerebellum, unilateral pedunculotomy causes deafferentation of the hemicerebellum and axotomy in the efferent pathway from the ipsilateral deep cerebellar nuclei. This results in a smaller hemicerebellum with normal cortical laminae but no extracerebellar outflow. In order to identify the sequence of events which leads to this altered structure and therefore to understand the relative importance of afferent versus target-derived trophic support, unilateral cerebellar pedunculotomy was performed on neonatal rat pups, aged between 1 and 3 days. The cerebella were analysed for histological and vascular changes after survival times of 0, 3, 6, 9, 12, 18, 21, 24 and 48 h. The results show that the effects of axotomy on the deep cerebellar nuclear neurons begin within 3 h of the lesion and apoptotic neuronal degeneration occurs within 48 h. However, the cerebellar cortical neurons continue to undergo normal histological development for at least 48 h after deafferentation. In addition, since ischaemia induces similar effects, a study of the vascular tree was made. The results indicate that the pedunculotomy does not alter the blood supply to the cerebellum, nor induce ischaemia of the cerebellar neurons. From this it may be hypothesised that target-derived trophic support is more crucial for the survival of immature neurons than is the trophic effect of afferent input
    corecore