24 research outputs found

    Evaluation of a semiquantitative SNAP test for measurement of bile acids in dogs

    Get PDF
    Background. Serum bile acids (SBA) are used as a routine screening tool of liver function in dogs. Serum samples are usually shipped to a referral laboratory for quantitative analysis with an enzymatic chemistry analyzer. The canine SNAP Bile Acids Test (SNAP-BAT) provides an immediate, semi-quantitative measurement of bile acid concentrations in-house. With the SNAP-BAT, bile acids concentrations of 5–30 µmol/L are quantified, and results outside of that range are classified as 30 µmol/L. Agreement of the SNAP-BAT with the enzymatic method has not been extensively investigated.Objectives. The purposes of this prospective clinical study were to assess the precision of the SNAP-BAT and determine agreement of SNAP-BAT with results from an in-house chemistry analyzer.Methods. After verifying intra-assay precision of the SNAP-BAT, a prospective analysis was performed using blood samples collected from 56 dogs suspected to have liver disease. Each sample was analyzed with an enzymatic, in-house chemistry analyzer and the SNAP-BAT. Agreement between the two methods was statistically assessed using the κ index of agreement.Results. Intra-assay variability was minimal. The κ index for agreement between the SNAP-BAT and routine chemistry analyzer was between 0.752 and 0.819, indicating substantial to near perfect agreement.Conclusions. The SNAP-BAT is a highly accurate, semi-quantitative test that yields immediate results, and has very little intra-assay variability, particularly for results >30 µmol/L

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li 7 La 3 Zr 2 O 12 Electrolyte and LiCoO 2 Cathode

    No full text
    Copyright © 2018 American Chemical Society. All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO2 (LCO) thin films deposited on cubic Al-doped Li7La3Zr2O12 (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, and energy-dispersive X-ray spectroscopy data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300 °C. La2Zr2O7 and Li2CO3 were identified as decomposition products after annealing at 500 °C by synchrotron X-ray diffraction. X-ray absorption spectroscopy results indicate the presence of also LaCoO3 in addition to La2Zr2O7 and Li2CO3. On the basis of electrochemical impedance spectroscopy and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO|LLZO|LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500 °C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO2-free environments are desirable for obtaining ceramic cathode|electrolyte interfaces that enable fast Li transfer and high capacity

    Restriction spectrum imaging predicts response to bevacizumab in patients with high-grade glioma.

    No full text
    BackgroundDiffusion-weighted imaging has shown initial promise for evaluating response to bevacizumab in patients with high-grade glioma (HGG). However, it is well recognized that the apparent diffusion coefficient (ADC) is influenced by bevacizumab-induced reductions in edema, which may limit its prognostic value. We demonstrate that an advanced diffusion-weighted imaging technique, restriction spectrum imaging (RSI), improves the evaluation of response to bevacizumab because unlike ADC, RSI is not affected by resolution of edema.MethodsRSI and ADC maps were analyzed for 40 patients with HGG prior to and following initiation of bevacizumab. Volumes of interest were drawn for regions of contrast enhancement (CE) and fluid attenuated inversion recovery (FLAIR) hyperintensity and histogram percentiles within volumes of interest were calculated for ADC 10th percentile (ADC-CE10%, ADC-FLAIR10%) and for RSI 90th percentile (RSI-CE90%, RSI-FLAIR90%). Cox proportional hazard models were used to evaluate the relationship between imaging parameters, progression-free survival (PFS), and overall survival (OS).ResultsAn increase in RSI-FLAIR90% following bevacizumab was the strongest predictor of poor PFS (P= .016) and OS (P= .004), whereas decreases in ADC-FLAIR10% showed a weaker association with OS only (P= .041). Within the CE region, increases in RSI-CE90% alone were associated with poorer OS. Correlational analysis revealed that decreases in FLAIR volume were associated with decreases in ADC-FLAIR10%, but not with changes in RSI-FLAIR90%.ConclusionRSI is less influenced by changes in edema, conferring an advantage of RSI over ADC for evaluating response to anti-angiogenic therapy in patients with HGG

    Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status.

    No full text
    The 2016 World Health Organization Classification of Tumors of the Central Nervous System incorporates the use of molecular information into the classification of brain tumors, including grade II and III gliomas, providing new prognostic information that cannot be delineated based on histopathology alone. We hypothesized that these genomic subgroups may also have distinct imaging features. A retrospective single institution study was performed on 40 patients with pathologically proven infiltrating WHO grade II/III gliomas with a pre-treatment MRI and molecular data on IDH, chromosomes 1p/19q and ATRX status. Two blinded Neuroradiologists qualitatively assessed MR features. The relationship between each parameter and molecular subgroup (IDH-wildtype; IDH-mutant-1p/19q codeleted-ATRX intact; IDH-mutant-1p/19q intact-ATRX loss) was evaluated with Fisher's exact test. Progression free survival (PFS) was also analyzed. A border that could not be defined on FLAIR was most characteristic of IDH-wildtype tumors, whereas IDH-mutant tumors demonstrated either well-defined or slightly ill-defined borders (p = 0.019). Degree of contrast enhancement and presence of restricted diffusion did not distinguish molecular subgroups. Frontal lobe predominance was associated with IDH-mutant tumors (p = 0.006). The IDH-wildtype subgroup had significantly shorter PFS than the IDH-mutant groups (p < 0.001). No differences in PFS were present when separating by tumor grade. FLAIR border patterns and tumor location were associated with distinct molecular subgroups of grade II/III gliomas. These imaging features may provide fundamental prognostic and predictive information at time of initial diagnostic imaging
    corecore