127 research outputs found

    BRAFV600E-Mutant Metastatic NSCLC: Disease Overview and Treatment Landscape

    Get PDF
    In this review, we cover the current understanding of BRAF mutations and associated clinical characteristics in patients with metastatic NSCLC, approved and emerging treatment options, BRAF sequencing approaches, and unmet needs. The BRAFV600E mutation confers constitutive activity of the MAPK pathway, leading to enhanced growth, proliferation, and survival of tumor cells. Testing for BRAF mutations enables patients to be treated with therapies that directly target BRAFV600E and the MAPK pathway, but BRAF testing lags behind other oncogene testing in metastatic NSCLC. Additional therapies targeting BRAFV600E mutations provide options for patients with metastatic NSCLC. Emerging therapies and combinations under investigation could potentially overcome issues of resistance and target non-V600E mutations. Therefore, because targeted therapies with enhanced efficacy are on the horizon, being able to identify BRAF mutations in metastatic NSCLC may become even more important

    Results of Lung Cancer Screening in the Community.

    Get PDF
    PURPOSE: To address doubts regarding National Lung Screening Trial (NLST) generalizability, we analyzed over 6,000 lung cancer screenings (LCSs) within a community health system. METHODS: Our LCS program included 10 sites, 7 hospitals (2 non-university tertiary care, 5 community) and 3 free-standing imaging centers. Primary care clinicians referred patients. Standard criteria determined eligibility. Dedicated radiologists interpreted all LCSs, assigning Lung Imaging Reporting and Data System (Lung-RADS) categories. All category 4 Lung-RADS scans underwent multidisciplinary review and management recommendations. Data was prospectively collected from November 2013 through December 2018 and retrospectively analyzed. RESULTS: Of 4,666 referrals, 1,264 individuals were excluded or declined, and 3,402 individuals underwent initial LCS. Second through eighth LCSs were performed on 2,758 patients, for a total of 6,161 LCSs. Intervention rate after LCS was 14.6% (500 individuals) and was most often additional imaging. Invasive interventions (n = 226) were performed, including 141 diagnostic procedures and 85 surgeries in 176 individuals (procedure rate 6.6%). Ninety-five lung cancers were diagnosed: 84 non-small cell (stage 1: 60; stage 2: 7; stage 3: 9; stage 4: 8), and 11 small cell lung cancers. The procedural adverse event rate was 23/226 (10.1%) in 21 patients (0.6% of all screened individuals). Pneumothorax (n = 10) was the most frequent, 6 requiring pleural drainage. There were 2 deaths among 85 surgeries or 2.3% surgical mortality. CONCLUSIONS: Our LCS experience in a community setting demonstrated lung cancer diagnosis, stage shift, intervention frequency, and adverse event rate similar to the NLST. This study confirms that LCS can be performed successfully, safely, and with equivalence to the NLST in a community health care setting

    Phase 1b Trial of Proteasome Inhibitor Carfilzomib with Irinotecan in Lung Cancer and Other Irinotecan-Sensitive Malignancies That Have Progressed on Prior Therapy (Onyx IST Reference Number: CAR-IST-553)

    Get PDF
    Introduction Proteasome inhibition is an established therapy for many malignancies. Carfilzomib, a novel proteasome inhibitor, was combined with irinotecan to provide a synergistic approach in relapsed, irinotecan-sensitive cancers. Materials and Methods Patients with relapsed irinotecan-sensitive cancers received carfilzomib (Day 1, 2, 8, 9, 15, and 16) at three dose levels (20/27 mg/m2, 20/36 mg/m2 and 20/45 mg/m2/day) in combination with irinotecan (Days 1, 8 and 15) at 125 mg/m2/day. Key eligibility criteria included measurable disease, a Zubrod PS of 0 or 1, and acceptable organ function. Patients with stable asymptomatic brain metastases were eligible. Dose escalation utilized a standard 3 + 3 design. Results Overall, 16 patients were enrolled to three dose levels, with four patients replaced. Three patients experienced dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) was exceeded in Cohort 3. The RP2 dose was carfilzomib 20/36 mg/m2 (given on Days 1, 2, 8, 9, 15, and 16) and irinotecan 125 mg/m2 (Days 1, 8 and 15). Common Grade (Gr) 3 and 4 toxicities included fatigue (19%), thrombocytopenia (19%), and diarrhea (13%). Conclusions Irinotecan and carfilzomib were well tolerated, with common toxicities of fatigue, thrombocytopenia and neutropenic fever. Objective clinical response was 19% (one confirmed partial response (PR) in small cell lung cancer (SCLC) and two unconfirmed); stable disease (SD) was 6% for a disease control rate (DCR) of 25%. The recommended phase II dose was carfilzomib 20/36 mg/m2 and irinotecan125 mg/m2. The phase II evaluation is ongoing in relapsed small cell lung cancer

    474 Phase 1 study of SEA-TGT, a human, nonfucosylated anti-TIGIT monoclonal antibody with enhanced immune-effector function, in patients with advanced malignancies (SGNTGT-001, trial in progress)

    Get PDF
    BackgroundT-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory domains (TIGIT), and costimulatory receptor CD226 competitively bind 2 ligands, CD155 and CD112, which are expressed by tumor cells and antigen-presenting cells in the tumor microenvironment.1 2 Dual TIGIT/programmed cell death protein-1 (PD-1) blockade increased tumor antigen-specific CD8+ T-cell expansion and function in vitro and promoted potent antitumor response in vivo.3 4 TIGIT/PD-1 dual blockade using a TIGIT monoclonal antibody (mAb) with intact Fc produced clinical responses in advanced cancer.5 SEA-TGT is an investigational, human, nonfucosylated mAb directed against TIGIT. SEA-TGT binds to TIGIT, blocking inhibitory checkpoint signals directed at T cells. SEA-TGT enhances binding to activating FcγRIIIa and decreases binding to inhibitory FcγRIIb; this depletes immunosuppressive regulatory T cells and amplifies naive and memory T cells, potentially augmenting PD-1 inhibition effects. Preclinically, at suboptimal doses, SEA-TGT plus anti-PD-1 mAbs had superior antitumor activity than either agent alone.6MethodsSafety and antitumor activity of SEA TGT in ~377 adults (≥18 years) will be evaluated in this phase 1, multicenter, open-label, dose-escalation/expansion study. Part A will assess the safety/tolerability of SEA TGT to determine maximum tolerated and recommended doses. Part B will assess the safety and antitumor activity of the recommended dose in disease-specific expansion cohorts. Part C will assess SEA-TGT plus sasanlimab in dose-expansion cohorts after an initial safety run-in. Patients with histologically/cytologically confirmed relapsed/refractory/progressive metastatic solid tumors including non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), gastric/gastroesophageal junction carcinoma, cutaneous melanoma, bladder, cervical, ovarian or triple-negative breast cancer, or selected lymphomas will be eligible for Parts A and B. Part C will enroll patients with histologically confirmed advanced NSCLC (high [tumor proportion score (TPS) ≥50%] and low [TPS=1–49%] PD ligand 1 [PD-L1] expression), cutaneous melanoma, and HNSCC without previous anti–PD-1/PD-L1 therapy exposure. SEA TGT will be administered on Day 1 of 21-day cycles.Laboratory abnormalities, adverse events, dose-limiting toxicities, and dose-level safety and activity are primary endpoints. Secondary endpoints are objective response (OR) and complete response (CR) rates, duration of OR/CR, progression-free survival, overall survival, pharmacokinetics (PK), and antidrug antibodies. Exploratory analysis will include pharmacodynamics (PD), PK/PD relationships, biomarkers, and resistance to SEA-TGT. This trial is recruiting in Europe and North America.Trial RegistrationNCT04254107ReferencesBlake SJ, Dougall WC, Miles JJ, et al. Molecular pathways: Targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 2016;22(21):5183–5188.Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J ImmunoTher Cancer 2020;8:e000957.Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 2014;26(6):923–937.Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 2015;125(5):2046–2058.Rodriguez-Abreu D, Johnson ML, Hussein MA, et al. Primary analysis of a randomized, double-blind, phase 2 study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020;38(15 suppl):9503.Smith A, Zeng W, Lucas S, et al. Poster 1583. SEA-TGT is an empowered anti-TIGIT antibody that displays superior combinatorial activity with several therapeutic agents. Presented at: American Association for Cancer Research Annual Meeting; April 9–14, 2021; Virtual Meeting.Ethics ApprovalInstitutional review boards or independent ethics committees of participating sites approved the trial, which will be conducted in compliance with the Declaration of Helsinki and International Conference on Harmonisation Guidelines for Good Clinical Practice. All patients will provide written informed consent

    Development and Preliminary Clinical Activity of PD-1-Guided CTLA-4 Blocking Bispecific DART Molecule.

    Get PDF
    Combination immunotherapy with antibodies directed against PD-1 and CTLA-4 shows improved clinical benefit across cancer indications compared to single agents, albeit with increased toxicity. Leveraging the observation that PD-1 and CTLA-4 are co-expressed by tumor-infiltrating lymphocytes, an investigational PD-1 x CTLA-4 bispecific DART molecule, MGD019, is engineered to maximize checkpoint blockade in the tumor microenvironment via enhanced CTLA-4 blockade in a PD-1-binding-dependent manner

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Immunotherapy Combos: LAG-3, TIM-3, TIGIT, OX-40

    No full text

    OncLive Data Review: ESMO Congress 2021

    No full text
    • …
    corecore